Cargando…

Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function

BACKGROUND: Learning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-associat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Weidong, Zhang, Lan V, Taşan, Murat, Gibbons, Francis D, King, Oliver D, Park, Julie, Wunderlich, Zeba, Cherry, J Michael, Roth, Frederick P
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447541/
https://www.ncbi.nlm.nih.gov/pubmed/18613951
http://dx.doi.org/10.1186/gb-2008-9-s1-s7
Descripción
Sumario:BACKGROUND: Learning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-association', which transfers function from one gene to another via biological relationships. RESULTS: We have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-by-association and combines the results. Using a benchmark set of functional categories and input data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms. In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics and 12 functional linkage graphs based on 23 biological relationships. CONCLUSION: Funckenstein outperforms a previous combined strategy using a common benchmark dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant improvement over the component classifiers, showing the greatest synergy for the most specific functions. Performance was evaluated by cross-validation and by literature examination of the top-scoring novel predictions. These quantitative predictions should help prioritize experimental study of yeast gene functions.