Cargando…
Reproducibility Assessment of Independent Component Analysis of Expression Ratios From DNA Microarrays
DNA microarrays allow the measurement of transcript abundances for thousands of genes in parallel. Most commonly, a particular sample of interest is studied next to a neutral control, examining relative changes (ratios). Independent component analysis (ICA) is a promising modern method for the analy...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2448447/ https://www.ncbi.nlm.nih.gov/pubmed/18629283 http://dx.doi.org/10.1002/cfg.298 |
_version_ | 1782157137842012160 |
---|---|
author | Kreil, David Philip MacKay, David J. C. |
author_facet | Kreil, David Philip MacKay, David J. C. |
author_sort | Kreil, David Philip |
collection | PubMed |
description | DNA microarrays allow the measurement of transcript abundances for thousands of genes in parallel. Most commonly, a particular sample of interest is studied next to a neutral control, examining relative changes (ratios). Independent component analysis (ICA) is a promising modern method for the analysis of such experiments. The condition of ICA algorithms can, however, depend on the characteristics of the data examined, making algorithm properties such as robustness specific to the given application domain. To address the lack of studies examining the robustness of ICA applied to microarray measurements, we report on the stability of variational Bayesian ICA in this domain. Microarray data are usually preprocessed and transformed. Hence we first examined alternative transforms and data selections for the smallest modelling reconstruction errors. Log-ratio data are reconstructed better than non-transformed ratio data by our linear model with a Gaussian error term. To compare ICA results we must allow for ICA invariance under rescaling and permutation of the extracted signatures, which hold the loadings of the original variables (gene transcript ratios) on particular latent variables. We introduced a method to optimally match corresponding signatures between sets of results. The stability of signatures was then examined after (1) repetition of the same analysis run with different random number generator seeds, and (2) repetition of the analysis with partial data sets. The effects of both dropping a proportion of the gene transcript ratios and dropping measurements for several samples have been studied. In summary, signatures with a high relative data power were very likely to be retained, resulting in an overall stability of the analyses. Our analysis of 63 yeast wildtype vs. wild-type experiments, moreover, yielded 10 reliably identified signatures, demonstrating that the variance observed is not just noise. |
format | Text |
id | pubmed-2448447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2003 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-24484472008-07-14 Reproducibility Assessment of Independent Component Analysis of Expression Ratios From DNA Microarrays Kreil, David Philip MacKay, David J. C. Comp Funct Genomics Research Article DNA microarrays allow the measurement of transcript abundances for thousands of genes in parallel. Most commonly, a particular sample of interest is studied next to a neutral control, examining relative changes (ratios). Independent component analysis (ICA) is a promising modern method for the analysis of such experiments. The condition of ICA algorithms can, however, depend on the characteristics of the data examined, making algorithm properties such as robustness specific to the given application domain. To address the lack of studies examining the robustness of ICA applied to microarray measurements, we report on the stability of variational Bayesian ICA in this domain. Microarray data are usually preprocessed and transformed. Hence we first examined alternative transforms and data selections for the smallest modelling reconstruction errors. Log-ratio data are reconstructed better than non-transformed ratio data by our linear model with a Gaussian error term. To compare ICA results we must allow for ICA invariance under rescaling and permutation of the extracted signatures, which hold the loadings of the original variables (gene transcript ratios) on particular latent variables. We introduced a method to optimally match corresponding signatures between sets of results. The stability of signatures was then examined after (1) repetition of the same analysis run with different random number generator seeds, and (2) repetition of the analysis with partial data sets. The effects of both dropping a proportion of the gene transcript ratios and dropping measurements for several samples have been studied. In summary, signatures with a high relative data power were very likely to be retained, resulting in an overall stability of the analyses. Our analysis of 63 yeast wildtype vs. wild-type experiments, moreover, yielded 10 reliably identified signatures, demonstrating that the variance observed is not just noise. Hindawi Publishing Corporation 2003-06 /pmc/articles/PMC2448447/ /pubmed/18629283 http://dx.doi.org/10.1002/cfg.298 Text en Copyright © 2003 Hindawi Publishing Corporation. http://creativecommons.org/licenses/by/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kreil, David Philip MacKay, David J. C. Reproducibility Assessment of Independent Component Analysis of Expression Ratios From DNA Microarrays |
title | Reproducibility Assessment of Independent Component Analysis of
Expression Ratios From DNA Microarrays |
title_full | Reproducibility Assessment of Independent Component Analysis of
Expression Ratios From DNA Microarrays |
title_fullStr | Reproducibility Assessment of Independent Component Analysis of
Expression Ratios From DNA Microarrays |
title_full_unstemmed | Reproducibility Assessment of Independent Component Analysis of
Expression Ratios From DNA Microarrays |
title_short | Reproducibility Assessment of Independent Component Analysis of
Expression Ratios From DNA Microarrays |
title_sort | reproducibility assessment of independent component analysis of
expression ratios from dna microarrays |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2448447/ https://www.ncbi.nlm.nih.gov/pubmed/18629283 http://dx.doi.org/10.1002/cfg.298 |
work_keys_str_mv | AT kreildavidphilip reproducibilityassessmentofindependentcomponentanalysisofexpressionratiosfromdnamicroarrays AT mackaydavidjc reproducibilityassessmentofindependentcomponentanalysisofexpressionratiosfromdnamicroarrays |