Cargando…
Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data
Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for an...
Autores principales: | Shu, Guoping, Zeng, Beiyan, Chen, Yiping P., Smith, Oscar H. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2448457/ https://www.ncbi.nlm.nih.gov/pubmed/18629292 http://dx.doi.org/10.1002/cfg.290 |
Ejemplares similares
-
Clustering and Kernel Density Estimation for Assessment of Measurable Residual Disease by Flow Cytometry
por: Jacqmin, Hugues, et al.
Publicado: (2020) -
Adaptive kernel fuzzy clustering for missing data
por: Rodrigues, Anny K. G., et al.
Publicado: (2021) -
A multiple kernel density clustering algorithm for incomplete datasets in bioinformatics
por: Liao, Longlong, et al.
Publicado: (2018) -
Kernel density weighted loess normalization improves the performance of detection within asymmetrical data
por: Hsieh, Wen-Ping, et al.
Publicado: (2011) -
Contingent Kernel Density Estimation
por: Fortmann-Roe, Scott, et al.
Publicado: (2012)