Cargando…
Flexible boosting of accelerated failure time models
BACKGROUND: When boosting algorithms are used for building survival models from high-dimensional data, it is common to fit a Cox proportional hazards model or to use least squares techniques for fitting semiparametric accelerated failure time models. There are cases, however, where fitting a fully p...
Autores principales: | Schmid, Matthias, Hothorn, Torsten |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453145/ https://www.ncbi.nlm.nih.gov/pubmed/18538026 http://dx.doi.org/10.1186/1471-2105-9-269 |
Ejemplares similares
-
Trend tests for the evaluation of exposure-response relationships in epidemiological exposure studies
por: Hothorn, Ludwig A, et al.
Publicado: (2009) -
Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
por: Mayr, Andreas, et al.
Publicado: (2016) -
Testing the additional predictive value of high-dimensional molecular data
por: Boulesteix, Anne-Laure, et al.
Publicado: (2010) -
Kernel based methods for accelerated failure time model with ultra-high dimensional data
por: Liu, Zhenqiu, et al.
Publicado: (2010) -
A flexible parametric accelerated failure time model and the extension to time-dependent acceleration factors
por: Crowther, Michael J, et al.
Publicado: (2022)