Cargando…
The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam
It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2469597/ https://www.ncbi.nlm.nih.gov/pubmed/18481097 http://dx.doi.org/10.1007/s00442-008-1048-4 |
Sumario: | It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P (mass): mol C g(−1) day(−1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Φ(mass): mol photosynthetic photon flux density (PPFD) g(−1) day(−1)] and LUE (mol C mol PPFD(−1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed. |
---|