Cargando…

Role of Glucose in IRS Signaling in Rat Pancreatic Islets: Specific Effects and Interplay with Insulin

We investigated the possible interplay between insulin and glucose signaling pathways in rat pancreatic β-cell with a special focus on the role of glucose in IRS signaling in vivo. Three groups of rats were constituted by combining simultaneous infusion during 48 h either of glucose and/or insulin,...

Descripción completa

Detalles Bibliográficos
Autores principales: Paris, Maryline, Bernard-Kargar, Catherine, Vilar, José, Kassis, Nadim, Ktorza, Alain
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478636/
https://www.ncbi.nlm.nih.gov/pubmed/15763940
http://dx.doi.org/10.1080/15438600490905169
Descripción
Sumario:We investigated the possible interplay between insulin and glucose signaling pathways in rat pancreatic β-cell with a special focus on the role of glucose in IRS signaling in vivo. Three groups of rats were constituted by combining simultaneous infusion during 48 h either of glucose and/or insulin, or glucose+diazoxide: Hyperglycemic- Hyperinsulinemic (HGHI), euglycemic-Hyperinsulinemic (eGHI), Hyperglycemic-euinsulinemic (HGeI). Control rats were infused with 0,9% NaCl. In HGHI and HGeI rats plasma glucose levels were maintained at 20-22 mmol/l. In eGHI rats, plasma glucose was not different from that of controls, whereas plasma insulin was much higher than in controls. In HGHI rats, IRS-2 mRNA expression, total protein and phosphorylated protein amounts were increased compared to controls. In HGeI rats, only IRS-2 mRNA expression was increased. No change was observed in eGHI rats whatever the parameter considered. In all groups, mRNA concentration of IRS-1 was similar to that of controls. The quantity of total and phosphorylated IRS- 1 protein was dramatically increased in HGHI rats and to a lesser extent in eGHI rats. Neither mRNA nor IRS-1 protein expression were modified in HGeI rats. The data suggest that glucose and insulin play at once a specific and a complementary role in islet IRSs signaling. Especially, glucose stimulates IRS-2 mRNA expression whatever the insulin status and independently of the secretory process. The differential regulation of IRS-1 and IRS-2 expressions is in agreement with their supposed different involvement in the control of β-cell growth and function.