Cargando…
Structural characterization and functional properties of a novel lipomannan variant isolated from a Corynebacterium glutamicum pimB′ mutant
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480597/ https://www.ncbi.nlm.nih.gov/pubmed/18421567 http://dx.doi.org/10.1007/s10482-008-9243-1 |
Sumario: | The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular interest. The disruption of NCgl2106 in C. glutamicum resulted in a mutant devoid of monoacylated phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) resulting in the accumulation of Ac(1)PIM(1) and cessation of phosphatidyl-myo-inositol (PI) based lipomannan (Cg-LM, now also termed ‘Cg-LM-A’) and lipoarabinomannan (Cg-LAM) biosynthesis. Interestingly, SDS-analysis of the lipoglycan fraction from the mutant revealed the synthesis of a single novel lipoglycan, now termed ‘Cg-LM-B’. Further chemical analyses established the lipoglycan possessed an α-d-glucopyranosyluronic acid-(1 → 3)-glycerol (GlcAGroAc(2)) based anchor which was then further glycosylated by 8–22 mannose residues, with Man(12–20)GlcAGroAC(2) molecular species being the most abundant, to form a novel lipomannan structure (Cg-LM-B). The deletion of NCgl2106 in C. glutamicum has now provided a useful strain, in addition with a deletion mutant of NCgl0452 in C. glutamicum for the purification of Cg-LM-A and Cg-LM-B. Interestingly, both Cg-LM species induced a similar production of TNF-α by a human macrophage cell line suggesting that the phospho-myo-inositol residue of the PI-anchor does not play a key role in lipoglycan pro-inflammatory activity. |
---|