Cargando…

Iron Accumulation with Age, Oxidative Stress and Functional Decline

Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accu...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jinze, Knutson, Mitchell D., Carter, Christy S., Leeuwenburgh, Christiaan
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481398/
https://www.ncbi.nlm.nih.gov/pubmed/18682742
http://dx.doi.org/10.1371/journal.pone.0002865
_version_ 1782157983644385280
author Xu, Jinze
Knutson, Mitchell D.
Carter, Christy S.
Leeuwenburgh, Christiaan
author_facet Xu, Jinze
Knutson, Mitchell D.
Carter, Christy S.
Leeuwenburgh, Christiaan
author_sort Xu, Jinze
collection PubMed
description Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.
format Text
id pubmed-2481398
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-24813982008-08-06 Iron Accumulation with Age, Oxidative Stress and Functional Decline Xu, Jinze Knutson, Mitchell D. Carter, Christy S. Leeuwenburgh, Christiaan PLoS One Research Article Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects. Public Library of Science 2008-08-06 /pmc/articles/PMC2481398/ /pubmed/18682742 http://dx.doi.org/10.1371/journal.pone.0002865 Text en Xu et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Xu, Jinze
Knutson, Mitchell D.
Carter, Christy S.
Leeuwenburgh, Christiaan
Iron Accumulation with Age, Oxidative Stress and Functional Decline
title Iron Accumulation with Age, Oxidative Stress and Functional Decline
title_full Iron Accumulation with Age, Oxidative Stress and Functional Decline
title_fullStr Iron Accumulation with Age, Oxidative Stress and Functional Decline
title_full_unstemmed Iron Accumulation with Age, Oxidative Stress and Functional Decline
title_short Iron Accumulation with Age, Oxidative Stress and Functional Decline
title_sort iron accumulation with age, oxidative stress and functional decline
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481398/
https://www.ncbi.nlm.nih.gov/pubmed/18682742
http://dx.doi.org/10.1371/journal.pone.0002865
work_keys_str_mv AT xujinze ironaccumulationwithageoxidativestressandfunctionaldecline
AT knutsonmitchelld ironaccumulationwithageoxidativestressandfunctionaldecline
AT carterchristys ironaccumulationwithageoxidativestressandfunctionaldecline
AT leeuwenburghchristiaan ironaccumulationwithageoxidativestressandfunctionaldecline