Cargando…
Identification of motifs that function in the splicing of non-canonical introns
BACKGROUND: While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and no...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481429/ https://www.ncbi.nlm.nih.gov/pubmed/18549497 http://dx.doi.org/10.1186/gb-2008-9-6-r97 |
_version_ | 1782157989441961984 |
---|---|
author | Murray, Jill I Voelker, Rodger B Henscheid, Kristy L Warf, M Bryan Berglund, J Andrew |
author_facet | Murray, Jill I Voelker, Rodger B Henscheid, Kristy L Warf, M Bryan Berglund, J Andrew |
author_sort | Murray, Jill I |
collection | PubMed |
description | BACKGROUND: While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment. RESULTS: Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts. CONCLUSION: The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif. |
format | Text |
id | pubmed-2481429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-24814292008-07-24 Identification of motifs that function in the splicing of non-canonical introns Murray, Jill I Voelker, Rodger B Henscheid, Kristy L Warf, M Bryan Berglund, J Andrew Genome Biol Research BACKGROUND: While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment. RESULTS: Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts. CONCLUSION: The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif. BioMed Central 2008 2008-06-12 /pmc/articles/PMC2481429/ /pubmed/18549497 http://dx.doi.org/10.1186/gb-2008-9-6-r97 Text en Copyright © 2008 Murray et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Murray, Jill I Voelker, Rodger B Henscheid, Kristy L Warf, M Bryan Berglund, J Andrew Identification of motifs that function in the splicing of non-canonical introns |
title | Identification of motifs that function in the splicing of non-canonical introns |
title_full | Identification of motifs that function in the splicing of non-canonical introns |
title_fullStr | Identification of motifs that function in the splicing of non-canonical introns |
title_full_unstemmed | Identification of motifs that function in the splicing of non-canonical introns |
title_short | Identification of motifs that function in the splicing of non-canonical introns |
title_sort | identification of motifs that function in the splicing of non-canonical introns |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481429/ https://www.ncbi.nlm.nih.gov/pubmed/18549497 http://dx.doi.org/10.1186/gb-2008-9-6-r97 |
work_keys_str_mv | AT murrayjilli identificationofmotifsthatfunctioninthesplicingofnoncanonicalintrons AT voelkerrodgerb identificationofmotifsthatfunctioninthesplicingofnoncanonicalintrons AT henscheidkristyl identificationofmotifsthatfunctioninthesplicingofnoncanonicalintrons AT warfmbryan identificationofmotifsthatfunctioninthesplicingofnoncanonicalintrons AT berglundjandrew identificationofmotifsthatfunctioninthesplicingofnoncanonicalintrons |