Cargando…
Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map
BACKGROUND: Trypanosoma brucei is the causative agent of human sleeping sickness and animal trypanosomiasis in sub-Saharan Africa, and it has been subdivided into three subspecies: Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause sleeping sickness in humans, and the nonhu...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481433/ https://www.ncbi.nlm.nih.gov/pubmed/18570680 http://dx.doi.org/10.1186/gb-2008-9-6-r103 |
_version_ | 1782157990363660288 |
---|---|
author | Cooper, Anneli Tait, Andy Sweeney, Lindsay Tweedie, Alison Morrison, Liam Turner, C Michael R MacLeod, Annette |
author_facet | Cooper, Anneli Tait, Andy Sweeney, Lindsay Tweedie, Alison Morrison, Liam Turner, C Michael R MacLeod, Annette |
author_sort | Cooper, Anneli |
collection | PubMed |
description | BACKGROUND: Trypanosoma brucei is the causative agent of human sleeping sickness and animal trypanosomiasis in sub-Saharan Africa, and it has been subdivided into three subspecies: Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause sleeping sickness in humans, and the nonhuman infective Trypanosoma brucei brucei. T. b. gambiense is the most clinically relevant subspecies, being responsible for more than 90% of all trypanosomal disease in humans. The genome sequence is now available, and a Mendelian genetic system has been demonstrated in T. brucei, facilitating genetic analysis in this diploid protozoan parasite. As an essential step toward identifying loci that determine important traits in the human-infective subspecies, we report the construction of a high-resolution genetic map of the STIB 386 strain of T. b. gambiense. RESULTS: The genetic map was determined using 119 microsatellite markers assigned to the 11 megabase chromosomes. The total genetic map length of the linkage groups was 733.1 cM, covering a physical distance of 17.9 megabases with an average map unit size of 24 kilobases/cM. Forty-seven markers in this map were also used in a genetic map of the nonhuman infective T. b. brucei subspecies, permitting comparison of the two maps and showing that synteny is conserved between the two subspecies. CONCLUSION: The genetic linkage map presented here is the first available for the human-infective trypanosome T. b. gambiense. In combination with the genome sequence, this opens up the possibility of using genetic analysis to identify the loci responsible for T. b. gambiense specific traits such as human infectivity as well as comparative studies of parasite field populations. |
format | Text |
id | pubmed-2481433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-24814332008-07-24 Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map Cooper, Anneli Tait, Andy Sweeney, Lindsay Tweedie, Alison Morrison, Liam Turner, C Michael R MacLeod, Annette Genome Biol Research BACKGROUND: Trypanosoma brucei is the causative agent of human sleeping sickness and animal trypanosomiasis in sub-Saharan Africa, and it has been subdivided into three subspecies: Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause sleeping sickness in humans, and the nonhuman infective Trypanosoma brucei brucei. T. b. gambiense is the most clinically relevant subspecies, being responsible for more than 90% of all trypanosomal disease in humans. The genome sequence is now available, and a Mendelian genetic system has been demonstrated in T. brucei, facilitating genetic analysis in this diploid protozoan parasite. As an essential step toward identifying loci that determine important traits in the human-infective subspecies, we report the construction of a high-resolution genetic map of the STIB 386 strain of T. b. gambiense. RESULTS: The genetic map was determined using 119 microsatellite markers assigned to the 11 megabase chromosomes. The total genetic map length of the linkage groups was 733.1 cM, covering a physical distance of 17.9 megabases with an average map unit size of 24 kilobases/cM. Forty-seven markers in this map were also used in a genetic map of the nonhuman infective T. b. brucei subspecies, permitting comparison of the two maps and showing that synteny is conserved between the two subspecies. CONCLUSION: The genetic linkage map presented here is the first available for the human-infective trypanosome T. b. gambiense. In combination with the genome sequence, this opens up the possibility of using genetic analysis to identify the loci responsible for T. b. gambiense specific traits such as human infectivity as well as comparative studies of parasite field populations. BioMed Central 2008 2008-06-22 /pmc/articles/PMC2481433/ /pubmed/18570680 http://dx.doi.org/10.1186/gb-2008-9-6-r103 Text en Copyright © 2008 Cooper et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Cooper, Anneli Tait, Andy Sweeney, Lindsay Tweedie, Alison Morrison, Liam Turner, C Michael R MacLeod, Annette Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
title | Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
title_full | Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
title_fullStr | Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
title_full_unstemmed | Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
title_short | Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
title_sort | genetic analysis of the human infective trypanosome trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481433/ https://www.ncbi.nlm.nih.gov/pubmed/18570680 http://dx.doi.org/10.1186/gb-2008-9-6-r103 |
work_keys_str_mv | AT cooperanneli geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap AT taitandy geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap AT sweeneylindsay geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap AT tweediealison geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap AT morrisonliam geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap AT turnercmichaelr geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap AT macleodannette geneticanalysisofthehumaninfectivetrypanosometrypanosomabruceigambiensechromosomalsegregationcrossingoverandtheconstructionofageneticmap |