Cargando…

Randomized Controlled Trial of an Internet-Based Versus Face-to-Face Dyspnea Self-Management Program for Patients With Chronic Obstructive Pulmonary Disease: Pilot Study

BACKGROUND: People with chronic obstructive pulmonary disease (COPD) continue to experience dyspnea with activities of daily living (ADL) despite optimal medical management. Information and communication technologies may facilitate collaborative symptom management and could potentially increase the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Huong Q, Donesky-Cuenco, DorAnne, Wolpin, Seth, Reinke, Lynn F, Benditt, Joshua O, Paul, Steven M, Carrieri-Kohlman, Virginia
Formato: Texto
Lenguaje:English
Publicado: Gunther Eysenbach 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2483918/
https://www.ncbi.nlm.nih.gov/pubmed/18417444
http://dx.doi.org/10.2196/jmir.990
Descripción
Sumario:BACKGROUND: People with chronic obstructive pulmonary disease (COPD) continue to experience dyspnea with activities of daily living (ADL) despite optimal medical management. Information and communication technologies may facilitate collaborative symptom management and could potentially increase the reach of such interventions to those who are unable to attend face-to-face pulmonary rehabilitation or self-management programs. OBJECTIVE: The purpose of this randomized study was to test the efficacy of two 6-month dyspnea self-management programs, Internet-based (eDSMP) and face-to-face (fDSMP), on dyspnea with ADL in people living with COPD. METHODS: We randomly assigned 50 participants with moderate to severe COPD who were current Internet users to either the eDSMP (n = 26) or fDSMP (n = 24) group. The content of the two programs was similar, focusing on education, skills training, and ongoing support for dyspnea self-management, including independent exercise. The only difference was the mode (Internet/personal digital assistant [PDA] or face-to-face) in which the education sessions, reinforcement contacts, and peer interactions took place. Participants returned to one of two academic clinical sites for evaluation at 3 and 6 months. The primary outcome of dyspnea with ADL was measured with the Chronic Respiratory Questionnaire. Secondary outcomes of exercise behavior, exercise performance, COPD exacerbations, and mediators, such as self-efficacy and social support, were also measured. A satisfaction survey was administered and a semistructured exit interview was conducted at the final visit. RESULTS: The study was stopped early due to multiple technical challenges with the eDSMP, but follow-up was completed on all enrolled participants. Data were available for 39 participants who completed the study (female: 44%; age: 69.5 ± 8.5 years; percent predicted forced expiratory volume in 1 s: 49.6 ± 17.0%). The fDSMP and eDSMP showed similar clinically meaningful changes in dyspnea with ADL from baseline to 3 months (fDSMP: + 3.3 points; eDSMP: + 3.5 points) and sustained these improvements at 6 months (fDSMP: + 4.0 points; eDSMP: + 2.5 points; time effects P < .001; group by time P = .51). Self-reported endurance exercise time (P = .001), physical functioning (P = .04), and self-efficacy for managing dyspnea (P = .02) also showed positive improvements over time in both groups with no significant differences with respect to program modality. Participants who completed the study reported favorable satisfaction with the programs. CONCLUSIONS: Although there were numerous technical challenges with the eDSMP, both dyspnea self-management programs were effective in reducing dyspnea with ADL in the short term. Our findings will need to be confirmed in a larger randomized trial with more mature Web and personal digital assistant tools, use of a control group, and longer follow-up. TRIAL REGISTRATION: clinicaltrials.gov NCT00102401, http://www.webcitation.org/5X8CX4gLC