Cargando…

Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

The 72 kDa heat shock protein (HSP72) is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions be...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xinsheng, Oglesbee, Michael
Formato: Texto
Lenguaje:English
Publicado: Biological Procedures Online 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC248471/
https://www.ncbi.nlm.nih.gov/pubmed/14615813
http://dx.doi.org/10.1251/bpo59
Descripción
Sumario:The 72 kDa heat shock protein (HSP72) is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV) nucleocapsid protein (N), a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins.