Cargando…
Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology
microRNAs act in a prevalent and conserved post-transcriptional gene regulatory mechanism that impacts development, homeostasis and disease, yet biological functions for the vast majority of miRNAs remain unknown. Given the power of invertebrate genetics to promote rapid evaluation of miRNA function...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486268/ https://www.ncbi.nlm.nih.gov/pubmed/18665242 http://dx.doi.org/10.1371/journal.pone.0002818 |
_version_ | 1782158091748376576 |
---|---|
author | Ibáñez-Ventoso, Carolina Vora, Mehul Driscoll, Monica |
author_facet | Ibáñez-Ventoso, Carolina Vora, Mehul Driscoll, Monica |
author_sort | Ibáñez-Ventoso, Carolina |
collection | PubMed |
description | microRNAs act in a prevalent and conserved post-transcriptional gene regulatory mechanism that impacts development, homeostasis and disease, yet biological functions for the vast majority of miRNAs remain unknown. Given the power of invertebrate genetics to promote rapid evaluation of miRNA function, recently expanded miRNA identifications (miRBase 10.1), and the importance of assessing potential functional redundancies within and between species, we evaluated miRNA sequence relationships by 5′ end match and overall homology criteria to compile a snapshot overview of miRNA families within the C. elegans and D. melanogaster genomes that includes their identified human counterparts. This compilation expands literature documentation of both the number of families and the number of family members, within and between nematode and fly models, and highlights sequences conserved between species pairs or among nematodes, flies and humans. Themes that emerge include the substantial potential for functional redundancy of miRNA sequences within species (84/139 C. elegans miRNAs and 70/152 D. melanogaster miRNAs share significant homology with other miRNAs encoded by their respective genomes), and the striking extent to which miRNAs are conserved across species—over half (73/139) C. elegans miRNAs share sequence homology with miRNAs encoded also in both fly and human genomes. This summary analysis of mature miRNA sequence relationships provides a quickly accessible resource that should facilitate functional and evolutionary analyses of miRNAs and miRNA families. |
format | Text |
id | pubmed-2486268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-24862682008-07-30 Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology Ibáñez-Ventoso, Carolina Vora, Mehul Driscoll, Monica PLoS One Research Article microRNAs act in a prevalent and conserved post-transcriptional gene regulatory mechanism that impacts development, homeostasis and disease, yet biological functions for the vast majority of miRNAs remain unknown. Given the power of invertebrate genetics to promote rapid evaluation of miRNA function, recently expanded miRNA identifications (miRBase 10.1), and the importance of assessing potential functional redundancies within and between species, we evaluated miRNA sequence relationships by 5′ end match and overall homology criteria to compile a snapshot overview of miRNA families within the C. elegans and D. melanogaster genomes that includes their identified human counterparts. This compilation expands literature documentation of both the number of families and the number of family members, within and between nematode and fly models, and highlights sequences conserved between species pairs or among nematodes, flies and humans. Themes that emerge include the substantial potential for functional redundancy of miRNA sequences within species (84/139 C. elegans miRNAs and 70/152 D. melanogaster miRNAs share significant homology with other miRNAs encoded by their respective genomes), and the striking extent to which miRNAs are conserved across species—over half (73/139) C. elegans miRNAs share sequence homology with miRNAs encoded also in both fly and human genomes. This summary analysis of mature miRNA sequence relationships provides a quickly accessible resource that should facilitate functional and evolutionary analyses of miRNAs and miRNA families. Public Library of Science 2008-07-30 /pmc/articles/PMC2486268/ /pubmed/18665242 http://dx.doi.org/10.1371/journal.pone.0002818 Text en Ibáñez-Ventoso et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ibáñez-Ventoso, Carolina Vora, Mehul Driscoll, Monica Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology |
title | Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology |
title_full | Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology |
title_fullStr | Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology |
title_full_unstemmed | Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology |
title_short | Sequence Relationships among C. elegans, D. melanogaster and Human microRNAs Highlight the Extensive Conservation of microRNAs in Biology |
title_sort | sequence relationships among c. elegans, d. melanogaster and human micrornas highlight the extensive conservation of micrornas in biology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486268/ https://www.ncbi.nlm.nih.gov/pubmed/18665242 http://dx.doi.org/10.1371/journal.pone.0002818 |
work_keys_str_mv | AT ibanezventosocarolina sequencerelationshipsamongcelegansdmelanogasterandhumanmicrornashighlighttheextensiveconservationofmicrornasinbiology AT voramehul sequencerelationshipsamongcelegansdmelanogasterandhumanmicrornashighlighttheextensiveconservationofmicrornasinbiology AT driscollmonica sequencerelationshipsamongcelegansdmelanogasterandhumanmicrornashighlighttheextensiveconservationofmicrornasinbiology |