Cargando…

A biomechanical study of plate versus intramedullary devices for midshaft clavicle fixation

BACKGROUND: Non-operative management of midshaft clavicle fractures is standard; however, surgical management is increasing. The purpose of this study is to compare the biomechanical performance of plate versus intramedullary fixation in cyclic bending for matched pairs of cadaveric clavicles. We hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Golish, S Raymond, Oliviero, Jason A, Francke, Eric I, Miller, Mark D
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2488335/
https://www.ncbi.nlm.nih.gov/pubmed/18631380
http://dx.doi.org/10.1186/1749-799X-3-28
Descripción
Sumario:BACKGROUND: Non-operative management of midshaft clavicle fractures is standard; however, surgical management is increasing. The purpose of this study is to compare the biomechanical performance of plate versus intramedullary fixation in cyclic bending for matched pairs of cadaveric clavicles. We hypothesized that the biomechanical properties are similar. METHODS: Eight sets of matched clavicles with vertical, midshaft osteotomies were prepared from fresh, frozen cadavers. A 3.5 mm dynamic compression plate or a 3.8 or 4.5 mm intramedullary device were used for fixation. Clavicles were loaded in a four-point bend at 6 different loads for 3000 cycles at 1 Hz starting with 180 N and increasing by 180 N with sampling at 2 Hz. Failure was defined as 10 mm of displacement or catastrophic construct failure prior to 10 mm of displacement. RESULTS: Between constructs, there was a significant difference with large effect size in displacement at fixed loads of 180 N (P = 0.001; Cohen's d = 1.85), 360 N (P = 0.033; Cohen's d = 1.39), 540 N (P = 0.003; Cohen's d = 0.73) and 720 N (P = 0.018; Cohen's d = 0.72). There was a significant difference with large effect size in load at fixed displacements of 5 mm (P = 0.001; Cohen's d = 1.49), 7.5 mm (P = 0.011; Cohen's d = 1.06), and 10 mm (P = 0.026; Cohen's d = 0.84). CONCLUSION: Plate constructs are superior in showing less displacement at fixed loads and greater loads at fixed displacements over a broad range of loads and displacements with cyclic four-point bending. The clinical relevance is that plate fixation may provide a stronger construct for early rehabilitation protocols that focus on repetitive movements in the early pre-operative period.