Cargando…
Conditional variable importance for random forests
BACKGROUND: Random forests are becoming increasingly popular in many scientific fields because they can cope with "small n large p" problems, complex interactions and even highly correlated predictor variables. Their variable importance measures have recently been suggested as screening to...
Autores principales: | Strobl, Carolin, Boulesteix, Anne-Laure, Kneib, Thomas, Augustin, Thomas, Zeileis, Achim |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491635/ https://www.ncbi.nlm.nih.gov/pubmed/18620558 http://dx.doi.org/10.1186/1471-2105-9-307 |
Ejemplares similares
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
por: Strobl, Carolin, et al.
Publicado: (2007) -
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Conditional permutation importance revisited
por: Debeer, Dries, et al.
Publicado: (2020) -
Letter to the Editor: On the term ‘interaction’ and related phrases in the literature on Random Forests
por: Boulesteix, Anne-Laure, et al.
Publicado: (2015) -
The behaviour of random forest permutation-based variable importance measures under predictor correlation
por: Nicodemus, Kristin K, et al.
Publicado: (2010)