Cargando…
Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke
BACKGROUND: Strokes are a leading cause of morbidity and the first cause of adult disability in the United States. Currently, no biomarkers are being used clinically to diagnose acute ischemic stroke. A diagnostic test using a blood sample from a patient would potentially be beneficial in treating t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492849/ https://www.ncbi.nlm.nih.gov/pubmed/18616825 http://dx.doi.org/10.1186/1472-6947-8-30 |
_version_ | 1782158198619242496 |
---|---|
author | Reddy, Anupama Wang, Honghui Yu, Hua Bonates, Tiberius O Gulabani, Vimla Azok, Joseph Hoehn, Gerard Hammer, Peter L Baird, Alison E Li, King C |
author_facet | Reddy, Anupama Wang, Honghui Yu, Hua Bonates, Tiberius O Gulabani, Vimla Azok, Joseph Hoehn, Gerard Hammer, Peter L Baird, Alison E Li, King C |
author_sort | Reddy, Anupama |
collection | PubMed |
description | BACKGROUND: Strokes are a leading cause of morbidity and the first cause of adult disability in the United States. Currently, no biomarkers are being used clinically to diagnose acute ischemic stroke. A diagnostic test using a blood sample from a patient would potentially be beneficial in treating the disease. RESULTS: A classification approach is described for differentiating between proteomic samples of stroke patients and controls, and a second novel predictive model is developed for predicting the severity of stroke as measured by the National Institutes of Health Stroke Scale (NIHSS). The models were constructed by applying the Logical Analysis of Data (LAD) methodology to the mass peak profiles of 48 stroke patients and 32 controls. The classification model was shown to have an accuracy of 75% when tested on an independent validation set of 35 stroke patients and 25 controls, while the predictive model exhibited superior performance when compared to alternative algorithms. In spite of their high accuracy, both models are extremely simple and were developed using a common set consisting of only 3 peaks. CONCLUSION: We have successfully identified 3 biomarkers that can detect ischemic stroke with an accuracy of 75%. The performance of the classification model on the validation set and on cross-validation does not deteriorate significantly when compared to that on the training set, indicating the robustness of the model. As in the case of the LAD classification model, the results of the predictive model validate the function constructed on our support-set for approximating the severity scores of stroke patients. The correlation and root mean absolute error of the LAD predictive model are consistently superior to those of the other algorithms used (Support vector machines, C4.5 decision trees, Logistic regression and Multilayer perceptron). |
format | Text |
id | pubmed-2492849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-24928492008-08-01 Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke Reddy, Anupama Wang, Honghui Yu, Hua Bonates, Tiberius O Gulabani, Vimla Azok, Joseph Hoehn, Gerard Hammer, Peter L Baird, Alison E Li, King C BMC Med Inform Decis Mak Research Article BACKGROUND: Strokes are a leading cause of morbidity and the first cause of adult disability in the United States. Currently, no biomarkers are being used clinically to diagnose acute ischemic stroke. A diagnostic test using a blood sample from a patient would potentially be beneficial in treating the disease. RESULTS: A classification approach is described for differentiating between proteomic samples of stroke patients and controls, and a second novel predictive model is developed for predicting the severity of stroke as measured by the National Institutes of Health Stroke Scale (NIHSS). The models were constructed by applying the Logical Analysis of Data (LAD) methodology to the mass peak profiles of 48 stroke patients and 32 controls. The classification model was shown to have an accuracy of 75% when tested on an independent validation set of 35 stroke patients and 25 controls, while the predictive model exhibited superior performance when compared to alternative algorithms. In spite of their high accuracy, both models are extremely simple and were developed using a common set consisting of only 3 peaks. CONCLUSION: We have successfully identified 3 biomarkers that can detect ischemic stroke with an accuracy of 75%. The performance of the classification model on the validation set and on cross-validation does not deteriorate significantly when compared to that on the training set, indicating the robustness of the model. As in the case of the LAD classification model, the results of the predictive model validate the function constructed on our support-set for approximating the severity scores of stroke patients. The correlation and root mean absolute error of the LAD predictive model are consistently superior to those of the other algorithms used (Support vector machines, C4.5 decision trees, Logistic regression and Multilayer perceptron). BioMed Central 2008-07-10 /pmc/articles/PMC2492849/ /pubmed/18616825 http://dx.doi.org/10.1186/1472-6947-8-30 Text en Copyright © 2008 Reddy et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Reddy, Anupama Wang, Honghui Yu, Hua Bonates, Tiberius O Gulabani, Vimla Azok, Joseph Hoehn, Gerard Hammer, Peter L Baird, Alison E Li, King C Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke |
title | Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke |
title_full | Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke |
title_fullStr | Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke |
title_full_unstemmed | Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke |
title_short | Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke |
title_sort | logical analysis of data (lad) model for the early diagnosis of acute ischemic stroke |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492849/ https://www.ncbi.nlm.nih.gov/pubmed/18616825 http://dx.doi.org/10.1186/1472-6947-8-30 |
work_keys_str_mv | AT reddyanupama logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT wanghonghui logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT yuhua logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT bonatestiberiuso logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT gulabanivimla logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT azokjoseph logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT hoehngerard logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT hammerpeterl logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT bairdalisone logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke AT likingc logicalanalysisofdataladmodelfortheearlydiagnosisofacuteischemicstroke |