Cargando…
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
BACKGROUND: Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate classification algorithms available for microar...
Autores principales: | Statnikov, Alexander, Wang, Lily, Aliferis, Constantin F |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492881/ https://www.ncbi.nlm.nih.gov/pubmed/18647401 http://dx.doi.org/10.1186/1471-2105-9-319 |
Ejemplares similares
-
Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective
por: Aliferis, Constantin F., et al.
Publicado: (2007) -
A comprehensive evaluation of multicategory classification methods for microbiomic data
por: Statnikov, Alexander, et al.
Publicado: (2013) -
Analysis and Computational Dissection of Molecular Signature Multiplicity
por: Statnikov, Alexander, et al.
Publicado: (2010) -
SVM Classifier – a comprehensive java interface for support vector machine classification of microarray data
por: Pirooznia, Mehdi, et al.
Publicado: (2006) -
Network-based support vector machine for classification of microarray samples
por: Zhu, Yanni, et al.
Publicado: (2009)