Cargando…

siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle

OBJECTIVE—Proinflammatory cytokines contribute to systemic low-grade inflammation and insulin resistance. Tumor necrosis factor (TNF)-α impedes insulin signaling in insulin target tissues. We determined the role of inhibitor of nuclear factor-κB kinase (IKK)β in TNF-α–induced impairments in insulin...

Descripción completa

Detalles Bibliográficos
Autores principales: Austin, Reginald L., Rune, Anna, Bouzakri, Karim, Zierath, Juleen R., Krook, Anna
Formato: Texto
Lenguaje:English
Publicado: American Diabetes Association 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494681/
https://www.ncbi.nlm.nih.gov/pubmed/18443205
http://dx.doi.org/10.2337/db07-0763
_version_ 1782158246842204160
author Austin, Reginald L.
Rune, Anna
Bouzakri, Karim
Zierath, Juleen R.
Krook, Anna
author_facet Austin, Reginald L.
Rune, Anna
Bouzakri, Karim
Zierath, Juleen R.
Krook, Anna
author_sort Austin, Reginald L.
collection PubMed
description OBJECTIVE—Proinflammatory cytokines contribute to systemic low-grade inflammation and insulin resistance. Tumor necrosis factor (TNF)-α impedes insulin signaling in insulin target tissues. We determined the role of inhibitor of nuclear factor-κB kinase (IKK)β in TNF-α–induced impairments in insulin signaling and glucose metabolism in skeletal muscle. RESEARCH DESIGN AND METHODS—Small interfering RNA (siRNA) was used to silence IKKβ gene expression in primary human skeletal muscle myotubes from nondiabetic subjects. siRNA gene silencing reduced IKKβ protein expression 73% (P < 0.05). Myotubes were incubated in the absence or presence of insulin and/or TNF-α, and effects of IKKβ silencing on insulin signaling and glucose metabolism were determined. RESULTS—Insulin increased glucose uptake 1.7-fold (P < 0.05) and glucose incorporation into glycogen 3.8-fold (P < 0.05) in myotubes from nondiabetic subjects. TNF-α exposure fully impaired insulin-mediated glucose uptake and metabolism. IKKβ siRNA protected against TNF-α–induced impairments in glucose metabolism, since insulin-induced increases in glucose uptake (1.5-fold; P < 0.05) and glycogen synthesis (3.5-fold; P < 0.05) were restored. Conversely, TNF-α–induced increases in insulin receptor substrate-1 serine phosphorylation (Ser(312)), Jun NH(2)-terminal kinase phosphorylation, and extracellular signal–related kinase-1/2 mitogen-activated protein kinase (MAPK) phosphorylation were unaltered by siRNA-mediated IKKβ reduction. siRNA-mediated IKKβ reduction prevented TNF-α–induced insulin resistance on Akt Ser(473) and Thr(308) phosphorylation and phosphorylation of the 160-kDa Akt substrate AS160. IKKβ silencing had no effect on cell differentiation. Finally, mRNA expression of GLUT1 or GLUT4 and protein expression of MAPK kinase kinase kinase isoform 4 (MAP4K4) was unaltered by IKKβ siRNA. CONCLUSIONS—IKKβ silencing prevents TNF-α–induced impairments in insulin action on Akt phosphorylation and glucose uptake and metabolism in human skeletal muscle.
format Text
id pubmed-2494681
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-24946812009-08-01 siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle Austin, Reginald L. Rune, Anna Bouzakri, Karim Zierath, Juleen R. Krook, Anna Diabetes Signal Transduction OBJECTIVE—Proinflammatory cytokines contribute to systemic low-grade inflammation and insulin resistance. Tumor necrosis factor (TNF)-α impedes insulin signaling in insulin target tissues. We determined the role of inhibitor of nuclear factor-κB kinase (IKK)β in TNF-α–induced impairments in insulin signaling and glucose metabolism in skeletal muscle. RESEARCH DESIGN AND METHODS—Small interfering RNA (siRNA) was used to silence IKKβ gene expression in primary human skeletal muscle myotubes from nondiabetic subjects. siRNA gene silencing reduced IKKβ protein expression 73% (P < 0.05). Myotubes were incubated in the absence or presence of insulin and/or TNF-α, and effects of IKKβ silencing on insulin signaling and glucose metabolism were determined. RESULTS—Insulin increased glucose uptake 1.7-fold (P < 0.05) and glucose incorporation into glycogen 3.8-fold (P < 0.05) in myotubes from nondiabetic subjects. TNF-α exposure fully impaired insulin-mediated glucose uptake and metabolism. IKKβ siRNA protected against TNF-α–induced impairments in glucose metabolism, since insulin-induced increases in glucose uptake (1.5-fold; P < 0.05) and glycogen synthesis (3.5-fold; P < 0.05) were restored. Conversely, TNF-α–induced increases in insulin receptor substrate-1 serine phosphorylation (Ser(312)), Jun NH(2)-terminal kinase phosphorylation, and extracellular signal–related kinase-1/2 mitogen-activated protein kinase (MAPK) phosphorylation were unaltered by siRNA-mediated IKKβ reduction. siRNA-mediated IKKβ reduction prevented TNF-α–induced insulin resistance on Akt Ser(473) and Thr(308) phosphorylation and phosphorylation of the 160-kDa Akt substrate AS160. IKKβ silencing had no effect on cell differentiation. Finally, mRNA expression of GLUT1 or GLUT4 and protein expression of MAPK kinase kinase kinase isoform 4 (MAP4K4) was unaltered by IKKβ siRNA. CONCLUSIONS—IKKβ silencing prevents TNF-α–induced impairments in insulin action on Akt phosphorylation and glucose uptake and metabolism in human skeletal muscle. American Diabetes Association 2008-08 /pmc/articles/PMC2494681/ /pubmed/18443205 http://dx.doi.org/10.2337/db07-0763 Text en Copyright © 2008, American Diabetes Association Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
spellingShingle Signal Transduction
Austin, Reginald L.
Rune, Anna
Bouzakri, Karim
Zierath, Juleen R.
Krook, Anna
siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
title siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
title_full siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
title_fullStr siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
title_full_unstemmed siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
title_short siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
title_sort sirna-mediated reduction of inhibitor of nuclear factor-κb kinase prevents tumor necrosis factor-α–induced insulin resistance in human skeletal muscle
topic Signal Transduction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494681/
https://www.ncbi.nlm.nih.gov/pubmed/18443205
http://dx.doi.org/10.2337/db07-0763
work_keys_str_mv AT austinreginaldl sirnamediatedreductionofinhibitorofnuclearfactorkbkinasepreventstumornecrosisfactorainducedinsulinresistanceinhumanskeletalmuscle
AT runeanna sirnamediatedreductionofinhibitorofnuclearfactorkbkinasepreventstumornecrosisfactorainducedinsulinresistanceinhumanskeletalmuscle
AT bouzakrikarim sirnamediatedreductionofinhibitorofnuclearfactorkbkinasepreventstumornecrosisfactorainducedinsulinresistanceinhumanskeletalmuscle
AT zierathjuleenr sirnamediatedreductionofinhibitorofnuclearfactorkbkinasepreventstumornecrosisfactorainducedinsulinresistanceinhumanskeletalmuscle
AT krookanna sirnamediatedreductionofinhibitorofnuclearfactorkbkinasepreventstumornecrosisfactorainducedinsulinresistanceinhumanskeletalmuscle