Cargando…

Activation of Peroxisome Proliferator–Activated Receptor β/δ Inhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2

OBJECTIVE—Chronic activation of the nuclear factor-κB (NF-κB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator–activated receptor (PPAR) β/δ activa...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez-Calvo, Ricardo, Serrano, Lucía, Coll, Teresa, Moullan, Norman, Sánchez, Rosa M., Merlos, Manuel, Palomer, Xavier, Laguna, Juan C., Michalik, Liliane, Wahli, Walter, Vázquez-Carrera, Manuel
Formato: Texto
Lenguaje:English
Publicado: American Diabetes Association 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494695/
https://www.ncbi.nlm.nih.gov/pubmed/18443198
http://dx.doi.org/10.2337/db08-0176
Descripción
Sumario:OBJECTIVE—Chronic activation of the nuclear factor-κB (NF-κB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator–activated receptor (PPAR) β/δ activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS—First, we examined whether the PPARβ/δ agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)–Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-κB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARβ/δ expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-κB DNA-binding activity. Furthermore, IL-6 expression and NF-κB DNA-binding activity was higher in white adipose tissue from PPARβ/δ-null mice than in wild-type mice. Because mitogen-activated protein kinase–extracellular signal–related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-κB activation in adipocytes, we explored whether PPARβ/δ prevented NF-κB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-κB activity, such as ZDF rats and PPARβ/δ-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS—These findings indicate that activation of PPARβ/δ inhibits enhanced cytokine production in adipocytes by preventing NF-κB activation via ERK1/2, an effect that may help prevent insulin resistance.