Cargando…
The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria
Adhesive PfEMP1 proteins are displayed on the surface of malaria-infected red blood cells. They play a critical role in the disease, tethering infected cells away from destruction by the spleen and causing many severe symptoms. A molecular understanding of how these domains maintain their binding pr...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494935/ https://www.ncbi.nlm.nih.gov/pubmed/18550531 http://dx.doi.org/10.1074/jbc.C800086200 |
_version_ | 1782158253754417152 |
---|---|
author | Higgins, Matthew K. |
author_facet | Higgins, Matthew K. |
author_sort | Higgins, Matthew K. |
collection | PubMed |
description | Adhesive PfEMP1 proteins are displayed on the surface of malaria-infected red blood cells. They play a critical role in the disease, tethering infected cells away from destruction by the spleen and causing many severe symptoms. A molecular understanding of how these domains maintain their binding properties while evading immune detection will be important in developing therapeutics. In malaria of pregnancy, domains from the var2csa-encoded PfEMP1 protein interact with chondroitin sulfate on the placenta surface. This causes accumulation of infected red blood cells, leading to placental inflammation and block of blood flow to the developing fetus. This is associated with maternal anemia, low birth weight, and premature delivery and can lead to the death of mother and child. Here I present the structure of the chondroitin sulfate-binding DBL3X domain from a var2csa-encoded PfEMP1 protein. The domain adopts a fold similar to malarial invasion proteins, with extensive loop insertions. One loop is flexible in the unliganded structure but observed in the presence of sulfate or disaccharide, where it completes a sulfate-binding site. This loop, and others surrounding this putative carbohydrate-binding site, are flexible and polymorphic, perhaps protecting the binding site from immune detection. This suggests a model for how the domain maintains ligand binding while evading the immune response and will guide future drug and vaccine development. |
format | Text |
id | pubmed-2494935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-24949352008-10-21 The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria Higgins, Matthew K. J Biol Chem Accelerated Publication Adhesive PfEMP1 proteins are displayed on the surface of malaria-infected red blood cells. They play a critical role in the disease, tethering infected cells away from destruction by the spleen and causing many severe symptoms. A molecular understanding of how these domains maintain their binding properties while evading immune detection will be important in developing therapeutics. In malaria of pregnancy, domains from the var2csa-encoded PfEMP1 protein interact with chondroitin sulfate on the placenta surface. This causes accumulation of infected red blood cells, leading to placental inflammation and block of blood flow to the developing fetus. This is associated with maternal anemia, low birth weight, and premature delivery and can lead to the death of mother and child. Here I present the structure of the chondroitin sulfate-binding DBL3X domain from a var2csa-encoded PfEMP1 protein. The domain adopts a fold similar to malarial invasion proteins, with extensive loop insertions. One loop is flexible in the unliganded structure but observed in the presence of sulfate or disaccharide, where it completes a sulfate-binding site. This loop, and others surrounding this putative carbohydrate-binding site, are flexible and polymorphic, perhaps protecting the binding site from immune detection. This suggests a model for how the domain maintains ligand binding while evading the immune response and will guide future drug and vaccine development. American Society for Biochemistry and Molecular Biology 2008-08-08 /pmc/articles/PMC2494935/ /pubmed/18550531 http://dx.doi.org/10.1074/jbc.C800086200 Text en Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Accelerated Publication Higgins, Matthew K. The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria |
title | The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria |
title_full | The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria |
title_fullStr | The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria |
title_full_unstemmed | The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria |
title_short | The Structure of a Chondroitin Sulfate-binding Domain Important in Placental Malaria |
title_sort | structure of a chondroitin sulfate-binding domain important in placental malaria |
topic | Accelerated Publication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2494935/ https://www.ncbi.nlm.nih.gov/pubmed/18550531 http://dx.doi.org/10.1074/jbc.C800086200 |
work_keys_str_mv | AT higginsmatthewk thestructureofachondroitinsulfatebindingdomainimportantinplacentalmalaria AT higginsmatthewk structureofachondroitinsulfatebindingdomainimportantinplacentalmalaria |