Cargando…

Validation of Alternating Kernel Mixture Method: Application to Tissue Segmentation of Cortical and Subcortical Structures

This paper describes the application of the alternating Kernel mixture (AKM) segmentation algorithm to high resolution MRI subvolumes acquired from a 1.5T scanner (hippocampus, n = 10 and prefrontal cortex, n = 9) and a 3T scanner (hippocampus, n = 10 and occipital lobe, n = 10). Segmentation of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Nayoung A., Priebe, Carey E., Miller, Michael I., Ratnanather, J. Tilak
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2495022/
https://www.ncbi.nlm.nih.gov/pubmed/18695738
http://dx.doi.org/10.1155/2008/346129
Descripción
Sumario:This paper describes the application of the alternating Kernel mixture (AKM) segmentation algorithm to high resolution MRI subvolumes acquired from a 1.5T scanner (hippocampus, n = 10 and prefrontal cortex, n = 9) and a 3T scanner (hippocampus, n = 10 and occipital lobe, n = 10). Segmentation of the subvolumes into cerebrospinal fluid, gray matter, and white matter tissue is validated by comparison with manual segmentation. When compared with other segmentation methods that use traditional Bayesian segmentation, AKM yields smaller errors (P < .005, exact Wilcoxon signed rank test) demonstrating the robustness and wide applicability of AKM across different structures. By generating multiple mixtures for each tissue compartment, AKM mimics the increased variation of manual segmentation in partial volumes due to the highly folded tissues. AKM's superior performance makes it useful for tissue segmentation of subcortical and cortical structures in large-scale neuroimaging studies.