Cargando…
Using supernetworks to distinguish hybridization from lineage-sorting
BACKGROUND: A simple and widely used approach for detecting hybridization in phylogenies is to reconstruct gene trees from independent gene loci, and to look for gene tree incongruence. However, this approach may be confounded by factors such as poor taxon-sampling and/or incomplete lineage-sorting....
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2500029/ https://www.ncbi.nlm.nih.gov/pubmed/18625077 http://dx.doi.org/10.1186/1471-2148-8-202 |
_version_ | 1782158292110278656 |
---|---|
author | Holland, Barbara R Benthin, Steffi Lockhart, Peter J Moulton, Vincent Huber, Katharina T |
author_facet | Holland, Barbara R Benthin, Steffi Lockhart, Peter J Moulton, Vincent Huber, Katharina T |
author_sort | Holland, Barbara R |
collection | PubMed |
description | BACKGROUND: A simple and widely used approach for detecting hybridization in phylogenies is to reconstruct gene trees from independent gene loci, and to look for gene tree incongruence. However, this approach may be confounded by factors such as poor taxon-sampling and/or incomplete lineage-sorting. RESULTS: Using coalescent simulations, we investigated the potential of supernetwork methods to differentiate between gene tree incongruence arising from taxon sampling and incomplete lineage-sorting as opposed to hybridization. For few hybridization events, a large number of independent loci, and well-sampled taxa across these loci, we found that it was possible to distinguish incomplete lineage-sorting from hybridization using the filtered Z-closure and Q-imputation supernetwork methods. Moreover, we found that the choice of supernetwork method was less important than the choice of filtering, and that count-based filtering was the most effective filtering technique. CONCLUSION: Filtered supernetworks provide a tool for detecting and identifying hybridization events in phylogenies, a tool that should become increasingly useful in light of current genome sequencing initiatives and the ease with which large numbers of independent gene loci can be determined using new generation sequencing technologies. |
format | Text |
id | pubmed-2500029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25000292008-08-07 Using supernetworks to distinguish hybridization from lineage-sorting Holland, Barbara R Benthin, Steffi Lockhart, Peter J Moulton, Vincent Huber, Katharina T BMC Evol Biol Research Article BACKGROUND: A simple and widely used approach for detecting hybridization in phylogenies is to reconstruct gene trees from independent gene loci, and to look for gene tree incongruence. However, this approach may be confounded by factors such as poor taxon-sampling and/or incomplete lineage-sorting. RESULTS: Using coalescent simulations, we investigated the potential of supernetwork methods to differentiate between gene tree incongruence arising from taxon sampling and incomplete lineage-sorting as opposed to hybridization. For few hybridization events, a large number of independent loci, and well-sampled taxa across these loci, we found that it was possible to distinguish incomplete lineage-sorting from hybridization using the filtered Z-closure and Q-imputation supernetwork methods. Moreover, we found that the choice of supernetwork method was less important than the choice of filtering, and that count-based filtering was the most effective filtering technique. CONCLUSION: Filtered supernetworks provide a tool for detecting and identifying hybridization events in phylogenies, a tool that should become increasingly useful in light of current genome sequencing initiatives and the ease with which large numbers of independent gene loci can be determined using new generation sequencing technologies. BioMed Central 2008-07-14 /pmc/articles/PMC2500029/ /pubmed/18625077 http://dx.doi.org/10.1186/1471-2148-8-202 Text en Copyright ©2008 Holland et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Holland, Barbara R Benthin, Steffi Lockhart, Peter J Moulton, Vincent Huber, Katharina T Using supernetworks to distinguish hybridization from lineage-sorting |
title | Using supernetworks to distinguish hybridization from lineage-sorting |
title_full | Using supernetworks to distinguish hybridization from lineage-sorting |
title_fullStr | Using supernetworks to distinguish hybridization from lineage-sorting |
title_full_unstemmed | Using supernetworks to distinguish hybridization from lineage-sorting |
title_short | Using supernetworks to distinguish hybridization from lineage-sorting |
title_sort | using supernetworks to distinguish hybridization from lineage-sorting |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2500029/ https://www.ncbi.nlm.nih.gov/pubmed/18625077 http://dx.doi.org/10.1186/1471-2148-8-202 |
work_keys_str_mv | AT hollandbarbarar usingsupernetworkstodistinguishhybridizationfromlineagesorting AT benthinsteffi usingsupernetworkstodistinguishhybridizationfromlineagesorting AT lockhartpeterj usingsupernetworkstodistinguishhybridizationfromlineagesorting AT moultonvincent usingsupernetworkstodistinguishhybridizationfromlineagesorting AT huberkatharinat usingsupernetworkstodistinguishhybridizationfromlineagesorting |