Cargando…

A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation

Decreased expression of specific microRNAs (miRNAs) occurs in human tumors, which suggests a function for miRNAs in tumor suppression. Herein, levels of the miR-17-5p/miR-20a miRNA cluster were inversely correlated to cyclin D1 abundance in human breast tumors and cell lines. MiR-17/20 suppressed br...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Zuoren, Wang, Chenguang, Wang, Min, Li, Zhiping, Casimiro, Mathew C., Liu, Manran, Wu, Kongming, Whittle, James, Ju, Xiaoming, Hyslop, Terry, McCue, Peter, Pestell, Richard G.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2500136/
https://www.ncbi.nlm.nih.gov/pubmed/18695042
http://dx.doi.org/10.1083/jcb.200801079
Descripción
Sumario:Decreased expression of specific microRNAs (miRNAs) occurs in human tumors, which suggests a function for miRNAs in tumor suppression. Herein, levels of the miR-17-5p/miR-20a miRNA cluster were inversely correlated to cyclin D1 abundance in human breast tumors and cell lines. MiR-17/20 suppressed breast cancer cell proliferation and tumor colony formation by negatively regulating cyclin D1 translation via a conserved 3′ untranslated region miRNA-binding site, thereby inhibiting serum-induced S phase entry. The cell cycle effect of miR-17/20 was abrogated by cyclin D1 siRNA and in cyclin D1–deficient breast cancer cells. Mammary epithelial cell–targeted cyclin D1 expression induced miR-17-5p and miR-20a expression in vivo, and cyclin D1 bound the miR-17/20 cluster promoter regulatory region. In summary, these studies identify a novel cyclin D1/miR-17/20 regulatory feedback loop through which cyclin D1 induces miR-17-5p/miR-20a. In turn, miR-17/20 limits the proliferative function of cyclin D1, thus linking expression of a specific miRNA cluster to the regulation of oncogenesis.