Cargando…

The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells

BACKGROUND: Embryonic stem (ES) cells self-renew as coherent colonies in which cells maintain tight cell-cell contact. Although intercellular communications are essential to establish the basis of cell-specific identity, molecular mechanisms underlying intrinsic cell-cell interactions in ES cells at...

Descripción completa

Detalles Bibliográficos
Autores principales: Harb, Nicole, Archer, Trevor K., Sato, Noboru
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2500174/
https://www.ncbi.nlm.nih.gov/pubmed/18714354
http://dx.doi.org/10.1371/journal.pone.0003001
Descripción
Sumario:BACKGROUND: Embryonic stem (ES) cells self-renew as coherent colonies in which cells maintain tight cell-cell contact. Although intercellular communications are essential to establish the basis of cell-specific identity, molecular mechanisms underlying intrinsic cell-cell interactions in ES cells at the signaling level remain underexplored. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that endogenous Rho signaling is required for the maintenance of cell-cell contacts in ES cells. siRNA-mediated loss of function experiments demonstrated that Rock, a major effector kinase downstream of Rho, played a key role in the formation of cell-cell junctional assemblies through regulation of myosin II by controlling a myosin light chain phosphatase. Chemical engineering of this signaling axis by a Rock-specific inhibitor revealed that cell-cell adhesion was reversibly controllable and dispensable for self-renewal of mouse ES cells as confirmed by chimera assay. Furthermore, a novel culture system combining a single synthetic matrix, defined medium, and the Rock inhibitor fully warranted human ES cell self-renewal independent of animal-derived matrices, tight cell contacts, or fibroblastic niche-forming cells as determined by teratoma formation assay. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate an essential role of the Rho-Rock-Myosin signaling axis for the regulation of basic cell-cell communications in both mouse and human ES cells, and would contribute to advance in medically compatible xeno-free environments for human pluripotent stem cells.