Cargando…

Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus

PURPOSE: Both rx1 and pax6 are expressed during the initial formation of the vertebrate eye field, and they are thought to be crucial for maintenance of the retinal stem cells in the ciliary marginal zone. However, both genes continue to be expressed in different layers of the differentiating retina...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaghloul, Norann A., Moody, Sally A.
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2503186/
https://www.ncbi.nlm.nih.gov/pubmed/17277735
_version_ 1782158328748572672
author Zaghloul, Norann A.
Moody, Sally A.
author_facet Zaghloul, Norann A.
Moody, Sally A.
author_sort Zaghloul, Norann A.
collection PubMed
description PURPOSE: Both rx1 and pax6 are expressed during the initial formation of the vertebrate eye field, and they are thought to be crucial for maintenance of the retinal stem cells in the ciliary marginal zone. However, both genes continue to be expressed in different layers of the differentiating retina, suggesting that they have additional roles in cell type specification. Because previous work suggested that amacrine cell subtypes are derived from biased progenitors in the eye field, we tested whether altering Rx1 or Pax6 activity during eye field stages affects the production of three neurotransmitter subtypes of amacrine cells. METHODS: Gain-of-function and loss-of-function hormone-inducible constructs of Rx1 and Pax6 were used to alter Rx1 and Pax6 protein or activity levels after the formation of the eye field. The major-retina producing blastomere of the 32-cell stage Xenopus embryo (D1.1.1) was injected with mRNA encoding one of these proteins and mRNA encoding GFP to label the altered lineage. Embryos were treated with synthetic hormone at either early (stage 12) or late (stage 16) eye field stages and they developed to tadpole stages (stage 44/45) when the cells in the central retina have differentiated. Amacrine cell subtypes (dopamine [DA], neuropeptide Y [NPY], γ aminobutyrate acid [GABA]) were detected by immunofluorescence histology and the numbers of each type of cell produced within the affected lineage were counted. The percent contribution of the D1.1.1 lineage to a particular amacrine subtype after stage 12 or stage 16 hormone treatment were independently compared to those from gfp mRNA-injected control embryos that were similarly treated with hormone. RESULTS: Increasing Rx1 at early eye field stages promotes NPY amacrine cells and represses GABA and DA amacrine cells, and at late eye field stages significantly represses DA and NPY phenotypes but has a diminished effect on the GABA phenotype. Increasing Pax6 at early eye field stages represses NPY and DA amacrine cells but does not affect the GABA phenotype, whereas in the late eye field it significantly represses only the DA phenotype. CONCLUSIONS: Rx1 and Pax6 differentially modify the ability of eye field precursors to produce different neurotransmitter subtypes of amacrine cells. These effects varied for each of the subtypes investigated, indicating that amacrine cells are not all specified by a single genetic program. Furthermore, some cases were time-dependent, indicating that the downstream effects change as development proceeds.
format Text
id pubmed-2503186
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-25031862008-08-12 Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus Zaghloul, Norann A. Moody, Sally A. Mol Vis Research Article PURPOSE: Both rx1 and pax6 are expressed during the initial formation of the vertebrate eye field, and they are thought to be crucial for maintenance of the retinal stem cells in the ciliary marginal zone. However, both genes continue to be expressed in different layers of the differentiating retina, suggesting that they have additional roles in cell type specification. Because previous work suggested that amacrine cell subtypes are derived from biased progenitors in the eye field, we tested whether altering Rx1 or Pax6 activity during eye field stages affects the production of three neurotransmitter subtypes of amacrine cells. METHODS: Gain-of-function and loss-of-function hormone-inducible constructs of Rx1 and Pax6 were used to alter Rx1 and Pax6 protein or activity levels after the formation of the eye field. The major-retina producing blastomere of the 32-cell stage Xenopus embryo (D1.1.1) was injected with mRNA encoding one of these proteins and mRNA encoding GFP to label the altered lineage. Embryos were treated with synthetic hormone at either early (stage 12) or late (stage 16) eye field stages and they developed to tadpole stages (stage 44/45) when the cells in the central retina have differentiated. Amacrine cell subtypes (dopamine [DA], neuropeptide Y [NPY], γ aminobutyrate acid [GABA]) were detected by immunofluorescence histology and the numbers of each type of cell produced within the affected lineage were counted. The percent contribution of the D1.1.1 lineage to a particular amacrine subtype after stage 12 or stage 16 hormone treatment were independently compared to those from gfp mRNA-injected control embryos that were similarly treated with hormone. RESULTS: Increasing Rx1 at early eye field stages promotes NPY amacrine cells and represses GABA and DA amacrine cells, and at late eye field stages significantly represses DA and NPY phenotypes but has a diminished effect on the GABA phenotype. Increasing Pax6 at early eye field stages represses NPY and DA amacrine cells but does not affect the GABA phenotype, whereas in the late eye field it significantly represses only the DA phenotype. CONCLUSIONS: Rx1 and Pax6 differentially modify the ability of eye field precursors to produce different neurotransmitter subtypes of amacrine cells. These effects varied for each of the subtypes investigated, indicating that amacrine cells are not all specified by a single genetic program. Furthermore, some cases were time-dependent, indicating that the downstream effects change as development proceeds. Molecular Vision 2007-01-26 /pmc/articles/PMC2503186/ /pubmed/17277735 Text en http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zaghloul, Norann A.
Moody, Sally A.
Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus
title Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus
title_full Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus
title_fullStr Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus
title_full_unstemmed Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus
title_short Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus
title_sort changes in rx1 and pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in xenopus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2503186/
https://www.ncbi.nlm.nih.gov/pubmed/17277735
work_keys_str_mv AT zaghloulnoranna changesinrx1andpax6activityateyefieldstagesdifferentiallyaltertheproductionofamacrineneurotransmittersubtypesinxenopus
AT moodysallya changesinrx1andpax6activityateyefieldstagesdifferentiallyaltertheproductionofamacrineneurotransmittersubtypesinxenopus