Cargando…

Heterogeneity in multistage carcinogenesis and mixture modeling

Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogene...

Descripción completa

Detalles Bibliográficos
Autores principales: Gsteiger, Sandro, Morgenthaler, Stephan
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2515834/
https://www.ncbi.nlm.nih.gov/pubmed/18644142
http://dx.doi.org/10.1186/1742-4682-5-13
Descripción
Sumario:Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune.