Cargando…
Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-κB pathways and promotes osteoclastogenesis in human oral cancer cells
Oral squamous cell carcinoma (SCC) has a striking tendency to invade to bone. The chemokine stromal cell-derived factor-1 (SDF-1) is constitutively secreted by osteoblasts and plays a key role in homing of hematopoietic cells to the bone marrow. Interleukin (IL)-6 plays an important role in osteocla...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516485/ https://www.ncbi.nlm.nih.gov/pubmed/18310089 http://dx.doi.org/10.1093/carcin/bgn045 |
Sumario: | Oral squamous cell carcinoma (SCC) has a striking tendency to invade to bone. The chemokine stromal cell-derived factor-1 (SDF-1) is constitutively secreted by osteoblasts and plays a key role in homing of hematopoietic cells to the bone marrow. Interleukin (IL)-6 plays an important role in osteoclastogenesis. Herein, we found that SDF-1α increased the secretion of IL-6 in cultured human SCC cells, as shown by reverse transcriptase–polymerase chain reaction and enzyme-linked immunosorbent assay. SDF-1α also increased the surface expression of chemokine receptor 4 (CXCR4) in SCC cells. CXCR4-neutralizing antibody, CXCR4-specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited SDF-1α-induced increase IL-6 production. The transcriptional regulation of IL-6 by SDF-1α was mediated by phosphorylation of extracellular signal-regulated kinases (ERKs) and activation of the nuclear factor-kappa B (NF-κB) components p65 and p50. The binding of p65 and p50 to the NF-κB element on the IL-6 promoter was enhanced by SDF-1α. In addition, IL-6 antibody antagonized the SCC-conditioned medium-increased osteoclastogenesis. These results suggested that SDF-1α from osteoblasts could induce release of IL-6 in human SCC cells via activation of CXCR4, ERK and NF-κB pathway and thereby promote osteoclastogenesis. |
---|