Cargando…

Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis

BACKGROUND: We propose a statistically principled baseline correction method, derived from a parametric smoothing model. It uses a score function to describe the key features of baseline distortion and constructs an optimal baseline curve to maximize it. The parameters are determined automatically b...

Descripción completa

Detalles Bibliográficos
Autores principales: Xi, Yuanxin, Rocke, David M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516527/
https://www.ncbi.nlm.nih.gov/pubmed/18664284
http://dx.doi.org/10.1186/1471-2105-9-324
Descripción
Sumario:BACKGROUND: We propose a statistically principled baseline correction method, derived from a parametric smoothing model. It uses a score function to describe the key features of baseline distortion and constructs an optimal baseline curve to maximize it. The parameters are determined automatically by using LOWESS (locally weighted scatterplot smoothing) regression to estimate the noise variance. RESULTS: We tested this method on 1D NMR spectra with different forms of baseline distortions, and demonstrated that it is effective for both regular 1D NMR spectra and metabolomics spectra with over-crowded peaks. CONCLUSION: Compared with the automatic baseline correction function in XWINNMR 3.5, the penalized smoothing method provides more accurate baseline correction for high-signal density metabolomics spectra.