Cargando…
Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-speci...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517619/ https://www.ncbi.nlm.nih.gov/pubmed/18715119 http://dx.doi.org/10.1371/journal.pbio.0060204 |
_version_ | 1782158520890687488 |
---|---|
author | Haag-Liautard, Cathy Coffey, Nicole Houle, David Lynch, Michael Charlesworth, Brian Keightley, Peter D |
author_facet | Haag-Liautard, Cathy Coffey, Nicole Houle, David Lynch, Michael Charlesworth, Brian Keightley, Peter D |
author_sort | Haag-Liautard, Cathy |
collection | PubMed |
description | Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10(−8) per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila. |
format | Text |
id | pubmed-2517619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-25176192008-08-19 Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster Haag-Liautard, Cathy Coffey, Nicole Houle, David Lynch, Michael Charlesworth, Brian Keightley, Peter D PLoS Biol Research Article Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10(−8) per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila. Public Library of Science 2008-08 2008-08-19 /pmc/articles/PMC2517619/ /pubmed/18715119 http://dx.doi.org/10.1371/journal.pbio.0060204 Text en © 2008 Haag-Liautard et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Haag-Liautard, Cathy Coffey, Nicole Houle, David Lynch, Michael Charlesworth, Brian Keightley, Peter D Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster |
title | Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster
|
title_full | Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster
|
title_fullStr | Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster
|
title_full_unstemmed | Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster
|
title_short | Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster
|
title_sort | direct estimation of the mitochondrial dna mutation rate in drosophila melanogaster |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517619/ https://www.ncbi.nlm.nih.gov/pubmed/18715119 http://dx.doi.org/10.1371/journal.pbio.0060204 |
work_keys_str_mv | AT haagliautardcathy directestimationofthemitochondrialdnamutationrateindrosophilamelanogaster AT coffeynicole directestimationofthemitochondrialdnamutationrateindrosophilamelanogaster AT houledavid directestimationofthemitochondrialdnamutationrateindrosophilamelanogaster AT lynchmichael directestimationofthemitochondrialdnamutationrateindrosophilamelanogaster AT charlesworthbrian directestimationofthemitochondrialdnamutationrateindrosophilamelanogaster AT keightleypeterd directestimationofthemitochondrialdnamutationrateindrosophilamelanogaster |