Cargando…
Gene Ontology term overlap as a measure of gene functional similarity
BACKGROUND: The availability of various high-throughput experimental and computational methods allows biologists to rapidly infer functional relationships between genes. It is often necessary to evaluate these predictions computationally, a task that requires a reference database for functional rela...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518162/ https://www.ncbi.nlm.nih.gov/pubmed/18680592 http://dx.doi.org/10.1186/1471-2105-9-327 |
_version_ | 1782158547961774080 |
---|---|
author | Mistry, Meeta Pavlidis, Paul |
author_facet | Mistry, Meeta Pavlidis, Paul |
author_sort | Mistry, Meeta |
collection | PubMed |
description | BACKGROUND: The availability of various high-throughput experimental and computational methods allows biologists to rapidly infer functional relationships between genes. It is often necessary to evaluate these predictions computationally, a task that requires a reference database for functional relatedness. One such reference is the Gene Ontology (GO). A number of groups have suggested that the semantic similarity of the GO annotations of genes can serve as a proxy for functional relatedness. Here we evaluate a simple measure of semantic similarity, term overlap (TO). RESULTS: We computed the TO for randomly selected gene pairs from the mouse genome. For comparison, we implemented six previously reported semantic similarity measures that share the feature of using computation of probabilities of terms to infer information content, in addition to three vector based approaches and a normalized version of the TO measure. We find that the overlap measure is highly correlated with the others but differs in detail. TO is at least as good a predictor of sequence similarity as the other measures. We further show that term overlap may avoid some problems that affect the probability-based measures. Term overlap is also much faster to compute than the information content-based measures. CONCLUSION: Our experiments suggest that term overlap can serve as a simple and fast alternative to other approaches which use explicit information content estimation or require complex pre-calculations, while also avoiding problems that some other measures may encounter. |
format | Text |
id | pubmed-2518162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25181622008-08-20 Gene Ontology term overlap as a measure of gene functional similarity Mistry, Meeta Pavlidis, Paul BMC Bioinformatics Research Article BACKGROUND: The availability of various high-throughput experimental and computational methods allows biologists to rapidly infer functional relationships between genes. It is often necessary to evaluate these predictions computationally, a task that requires a reference database for functional relatedness. One such reference is the Gene Ontology (GO). A number of groups have suggested that the semantic similarity of the GO annotations of genes can serve as a proxy for functional relatedness. Here we evaluate a simple measure of semantic similarity, term overlap (TO). RESULTS: We computed the TO for randomly selected gene pairs from the mouse genome. For comparison, we implemented six previously reported semantic similarity measures that share the feature of using computation of probabilities of terms to infer information content, in addition to three vector based approaches and a normalized version of the TO measure. We find that the overlap measure is highly correlated with the others but differs in detail. TO is at least as good a predictor of sequence similarity as the other measures. We further show that term overlap may avoid some problems that affect the probability-based measures. Term overlap is also much faster to compute than the information content-based measures. CONCLUSION: Our experiments suggest that term overlap can serve as a simple and fast alternative to other approaches which use explicit information content estimation or require complex pre-calculations, while also avoiding problems that some other measures may encounter. BioMed Central 2008-08-04 /pmc/articles/PMC2518162/ /pubmed/18680592 http://dx.doi.org/10.1186/1471-2105-9-327 Text en Copyright © 2008 Mistry and Pavlidis; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mistry, Meeta Pavlidis, Paul Gene Ontology term overlap as a measure of gene functional similarity |
title | Gene Ontology term overlap as a measure of gene functional similarity |
title_full | Gene Ontology term overlap as a measure of gene functional similarity |
title_fullStr | Gene Ontology term overlap as a measure of gene functional similarity |
title_full_unstemmed | Gene Ontology term overlap as a measure of gene functional similarity |
title_short | Gene Ontology term overlap as a measure of gene functional similarity |
title_sort | gene ontology term overlap as a measure of gene functional similarity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518162/ https://www.ncbi.nlm.nih.gov/pubmed/18680592 http://dx.doi.org/10.1186/1471-2105-9-327 |
work_keys_str_mv | AT mistrymeeta geneontologytermoverlapasameasureofgenefunctionalsimilarity AT pavlidispaul geneontologytermoverlapasameasureofgenefunctionalsimilarity |