Cargando…

N-Acetylcholinesterase-Induced Apoptosis in Alzheimer's Disease

BACKGROUND: Alzheimer's disease (AD) involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended “synaptic” acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena. METHODOLOGY AND PRINCI...

Descripción completa

Detalles Bibliográficos
Autores principales: Toiber, Debra, Berson, Amit, Greenberg, David, Melamed-Book, Naomi, Diamant, Sophia, Soreq, Hermona
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518620/
https://www.ncbi.nlm.nih.gov/pubmed/18769671
http://dx.doi.org/10.1371/journal.pone.0003108
Descripción
Sumario:BACKGROUND: Alzheimer's disease (AD) involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended “synaptic” acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena. METHODOLOGY AND PRINCIPAL FINDINGS: In transfected primary brain cultures, N-AChE-S induced cell death, morphological impairments and caspase 3 activation. Rapid internalization of fluorescently labeled fasciculin-2 to N-AChE-S transfected cells indicated membranal localization. In cultured cell lines, N-AChE-S transfection activated the Tau kinase GSK3, induced Tau hyper-phosphorylation and caused apoptosis. N-AChE-S-induced cell death was suppressible by inhibiting GSK3 or caspases, by enforced overexpression of the anti-apoptotic Bcl2 proteins, or by AChE inhibition or silencing. Moreover, inherent N-AChE-S was upregulated by stressors inducing protein misfolding and calcium imbalances, both characteristic of AD; and in cortical tissues from AD patients, N-AChE-S overexpression coincides with Tau hyper-phosphorylation. CONCLUSIONS: Together, these findings attribute an apoptogenic role to N-AChE-S and outline a potential value to AChE inhibitor therapeutics in early AD.