Cargando…

TGFβ induces SIK to negatively regulate type I receptor kinase signaling

Signal transduction by transforming growth factor β (TGFβ) coordinates physiological responses in diverse cell types. TGFβ signals via type I and type II receptor serine/threonine kinases and intracellular Smad proteins that regulate transcription. Strength and duration of TGFβ signaling is largely...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowanetz, Marcin, Lönn, Peter, Vanlandewijck, Michael, Kowanetz, Katarzyna, Heldin, Carl-Henrik, Moustakas, Aristidis
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518705/
https://www.ncbi.nlm.nih.gov/pubmed/18725536
http://dx.doi.org/10.1083/jcb.200804107
Descripción
Sumario:Signal transduction by transforming growth factor β (TGFβ) coordinates physiological responses in diverse cell types. TGFβ signals via type I and type II receptor serine/threonine kinases and intracellular Smad proteins that regulate transcription. Strength and duration of TGFβ signaling is largely dependent on a negative-feedback program initiated during signal progression. We have identified an inducible gene target of TGFβ/Smad signaling, the salt-inducible kinase (SIK), which negatively regulates signaling together with Smad7. SIK and Smad7 form a complex and cooperate to down-regulate the activated type I receptor ALK5. We further show that both the kinase and ubiquitin-associated domain of SIK are required for proper ALK5 degradation, with ubiquitin functioning to enhance SIK-mediated receptor degradation. Loss of endogenous SIK results in enhanced gene responses of the fibrotic and cytostatic programs of TGFβ. We thus identify in SIK a negative regulator that controls TGFβ receptor turnover and physiological signaling.