Cargando…
Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice
BACKGROUND: Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. RESULTS: Our hypomorphic pro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518924/ https://www.ncbi.nlm.nih.gov/pubmed/18673548 http://dx.doi.org/10.1186/1471-2202-9-76 |
_version_ | 1782158612926300160 |
---|---|
author | Sun, Ying Jia, Li Williams, Michael T Zamzow, Matt Ran, Huimin Quinn, Brian Aronow, Bruce J Vorhees, Charles V Witte, David P Grabowski, Gregory A |
author_facet | Sun, Ying Jia, Li Williams, Michael T Zamzow, Matt Ran, Huimin Quinn, Brian Aronow, Bruce J Vorhees, Charles V Witte, David P Grabowski, Gregory A |
author_sort | Sun, Ying |
collection | PubMed |
description | BACKGROUND: Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. RESULTS: Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/-) and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA). Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD) was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. CONCLUSION: These results show that: 1) Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2) Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3) CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression. |
format | Text |
id | pubmed-2518924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25189242008-08-22 Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice Sun, Ying Jia, Li Williams, Michael T Zamzow, Matt Ran, Huimin Quinn, Brian Aronow, Bruce J Vorhees, Charles V Witte, David P Grabowski, Gregory A BMC Neurosci Research Article BACKGROUND: Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. RESULTS: Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/-) and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA). Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD) was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. CONCLUSION: These results show that: 1) Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2) Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3) CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression. BioMed Central 2008-08-01 /pmc/articles/PMC2518924/ /pubmed/18673548 http://dx.doi.org/10.1186/1471-2202-9-76 Text en Copyright © 2008 Sun et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Sun, Ying Jia, Li Williams, Michael T Zamzow, Matt Ran, Huimin Quinn, Brian Aronow, Bruce J Vorhees, Charles V Witte, David P Grabowski, Gregory A Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice |
title | Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice |
title_full | Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice |
title_fullStr | Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice |
title_full_unstemmed | Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice |
title_short | Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice |
title_sort | temporal gene expression profiling reveals cebpd as a candidate regulator of brain disease in prosaposin deficient mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518924/ https://www.ncbi.nlm.nih.gov/pubmed/18673548 http://dx.doi.org/10.1186/1471-2202-9-76 |
work_keys_str_mv | AT sunying temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT jiali temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT williamsmichaelt temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT zamzowmatt temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT ranhuimin temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT quinnbrian temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT aronowbrucej temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT vorheescharlesv temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT wittedavidp temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice AT grabowskigregorya temporalgeneexpressionprofilingrevealscebpdasacandidateregulatorofbraindiseaseinprosaposindeficientmice |