Cargando…

Cortical Activity Influences Geniculocortical Spike Efficacy in the Macaque Monkey

Thalamocortical communication is a dynamic process influenced by both presynaptic and postsynaptic mechanisms. In this study, we recorded single-unit responses from cortical neurons that received direct input from the lateral geniculate nucleus (LGN) to address the question of whether prior patterns...

Descripción completa

Detalles Bibliográficos
Autores principales: Briggs, Farran, Usrey, W. Martin
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526010/
https://www.ncbi.nlm.nih.gov/pubmed/18958231
http://dx.doi.org/10.3389/neuro.07.003.2007
Descripción
Sumario:Thalamocortical communication is a dynamic process influenced by both presynaptic and postsynaptic mechanisms. In this study, we recorded single-unit responses from cortical neurons that received direct input from the lateral geniculate nucleus (LGN) to address the question of whether prior patterns of cortical activity affect the ability of LGN inputs to drive cortical responses. By examining the ongoing activity that preceded the arrival of electrically evoked spikes from the LGN, we identified a number of activity patterns that were predictive of suprathreshold communication. Namely, cortical neurons were more likely to respond to LGN stimulation when their activity levels increased to 30-40Hz and/or their activity displayed rhythmic patterns (30 ms intervals) with increased power in the gamma frequency band. Cortical neurons were also more likely to respond to LGN stimulation when their activity increased 30-40 ms prior to stimulation, suggesting that the phase of gamma activity also contributes to geniculocortical communication. Based on these results, we conclude that ongoing activity in the cortex is not random, but rather organized in a manner that can influence the dynamics of thalamocortical communication.