Cargando…
Machine learning based analyses on metabolic networks supports high-throughput knockout screens
BACKGROUND: Computational identification of new drug targets is a major goal of pharmaceutical bioinformatics. RESULTS: This paper presents a machine learning strategy to study and validate essential enzymes of a metabolic network. Each single enzyme was characterized by its local network topology,...
Autores principales: | Plaimas, Kitiporn, Mallm, Jan-Phillip, Oswald, Marcus, Svara, Fabian, Sourjik, Victor, Eils, Roland, König, Rainer |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2526078/ https://www.ncbi.nlm.nih.gov/pubmed/18652654 http://dx.doi.org/10.1186/1752-0509-2-67 |
Ejemplares similares
-
Identifying essential genes in bacterial metabolic networks with machine learning methods
por: Plaimas, Kitiporn, et al.
Publicado: (2010) -
Applying Support Vector Machines for Gene ontology based gene function prediction
por: Vinayagam, Arunachalam, et al.
Publicado: (2004) -
Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms
por: König, Rainer, et al.
Publicado: (2006) -
Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli
por: Schramm, Gunnar, et al.
Publicado: (2007) -
Prediction of Human-Plasmodium vivax Protein
Associations From Heterogeneous Network Structures Based on Machine-Learning
Approach
por: Suratanee, Apichat, et al.
Publicado: (2021)