Cargando…

Brain stimulation modulates driving behavior

BACKGROUND: Driving a car is a complex task requiring coordinated functioning of distributed brain regions. Controlled and safe driving depends on the integrity of the dorsolateral prefrontal cortex (DLPFC), a brain region, which has been shown to mature in late adolescence. METHODS: In this study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Beeli, Gian, Koeneke, Susan, Gasser, Katja, Jancke , Lutz
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527008/
https://www.ncbi.nlm.nih.gov/pubmed/18684333
http://dx.doi.org/10.1186/1744-9081-4-34
Descripción
Sumario:BACKGROUND: Driving a car is a complex task requiring coordinated functioning of distributed brain regions. Controlled and safe driving depends on the integrity of the dorsolateral prefrontal cortex (DLPFC), a brain region, which has been shown to mature in late adolescence. METHODS: In this study, driving performance of twenty-four male participants was tested in a high-end driving simulator before and after the application of transcranial direct current stimulation (tDCS) for 15 minutes over the left or right DLPFC. RESULTS: We show that external modulation of both, the left and the right, DLPFC directly influences driving behavior. Excitation of the DLPFC (by applying anodal tDCS) leads to a more careful driving style in virtual scenarios without the participants noticing changes in their behavior. CONCLUSION: This study is one of the first to prove that external stimulation of a specific brain area can influence a multi-part behavior in a very complex and everyday-life situation, therefore breaking new ground for therapy at a neural level.