Cargando…

Multiway modeling and analysis in stem cell systems biology

BACKGROUND: Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yener, Bülent, Acar, Evrim, Aguis, Pheadra, Bennett, Kristin, Vandenberg, Scott L, Plopper, George E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527292/
https://www.ncbi.nlm.nih.gov/pubmed/18625054
http://dx.doi.org/10.1186/1752-0509-2-63
_version_ 1782158792580923392
author Yener, Bülent
Acar, Evrim
Aguis, Pheadra
Bennett, Kristin
Vandenberg, Scott L
Plopper, George E
author_facet Yener, Bülent
Acar, Evrim
Aguis, Pheadra
Bennett, Kristin
Vandenberg, Scott L
Plopper, George E
author_sort Yener, Bülent
collection PubMed
description BACKGROUND: Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. RESULTS: We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. CONCLUSION: Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.
format Text
id pubmed-2527292
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-25272922008-09-02 Multiway modeling and analysis in stem cell systems biology Yener, Bülent Acar, Evrim Aguis, Pheadra Bennett, Kristin Vandenberg, Scott L Plopper, George E BMC Syst Biol Methodology Article BACKGROUND: Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. RESULTS: We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. CONCLUSION: Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. BioMed Central 2008-07-14 /pmc/articles/PMC2527292/ /pubmed/18625054 http://dx.doi.org/10.1186/1752-0509-2-63 Text en Copyright ©2008 Yener et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Yener, Bülent
Acar, Evrim
Aguis, Pheadra
Bennett, Kristin
Vandenberg, Scott L
Plopper, George E
Multiway modeling and analysis in stem cell systems biology
title Multiway modeling and analysis in stem cell systems biology
title_full Multiway modeling and analysis in stem cell systems biology
title_fullStr Multiway modeling and analysis in stem cell systems biology
title_full_unstemmed Multiway modeling and analysis in stem cell systems biology
title_short Multiway modeling and analysis in stem cell systems biology
title_sort multiway modeling and analysis in stem cell systems biology
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527292/
https://www.ncbi.nlm.nih.gov/pubmed/18625054
http://dx.doi.org/10.1186/1752-0509-2-63
work_keys_str_mv AT yenerbulent multiwaymodelingandanalysisinstemcellsystemsbiology
AT acarevrim multiwaymodelingandanalysisinstemcellsystemsbiology
AT aguispheadra multiwaymodelingandanalysisinstemcellsystemsbiology
AT bennettkristin multiwaymodelingandanalysisinstemcellsystemsbiology
AT vandenbergscottl multiwaymodelingandanalysisinstemcellsystemsbiology
AT ploppergeorgee multiwaymodelingandanalysisinstemcellsystemsbiology