Cargando…
Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability
BACKGROUND: Michiels et al. (Lancet 2005; 365: 488–92) employed a resampling strategy to show that the genes identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The genes most frequently identified in the separate resamplings were put forwa...
Autores principales: | van Vliet, Martin H, Reyal, Fabien, Horlings, Hugo M, van de Vijver, Marc J, Reinders, Marcel JT, Wessels, Lodewyk FA |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527336/ https://www.ncbi.nlm.nih.gov/pubmed/18684329 http://dx.doi.org/10.1186/1471-2164-9-375 |
Ejemplares similares
-
Integration of Clinical and Gene Expression Data Has a Synergetic Effect on Predicting Breast Cancer Outcome
por: van Vliet, Martin H., et al.
Publicado: (2012) -
SIRAC: Supervised Identification of Regions of Aberration in aCGH datasets
por: Lai, Carmen, et al.
Publicado: (2007) -
A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets
por: Lai, Carmen, et al.
Publicado: (2006) -
Knowledge driven decomposition of tumor expression profiles
por: van Vliet, Martin H, et al.
Publicado: (2009) -
A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the Proliferation, Immune response and RNA splicing modules in breast cancer
por: Reyal, Fabien, et al.
Publicado: (2008)