Cargando…
High-Throughput, Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs
BACKGROUND: Diverse bacterial genomes encode numerous small non-coding RNAs (sRNAs) that regulate myriad biological processes. While bioinformatic algorithms have proven effective in identifying sRNA-encoding loci, the lack of tools and infrastructure with which to execute these computationally dema...
Autores principales: | Livny, Jonathan, Teonadi, Hidayat, Livny, Miron, Waldor, Matthew K. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527527/ https://www.ncbi.nlm.nih.gov/pubmed/18787707 http://dx.doi.org/10.1371/journal.pone.0003197 |
Ejemplares similares
-
Correction: High-Throughput, Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs
por: Livny, Jonathan, et al.
Publicado: (2008) -
sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes
por: Livny, Jonathan, et al.
Publicado: (2005) -
The Principals and Practice of Distributed High Throughput Computing
por: Dr. Livny, Miron
Publicado: (2016) -
Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2
por: Livny, Jonathan, et al.
Publicado: (2006) -
Mining regulatory 5′UTRs from cDNA deep sequencing datasets
por: Livny, Jonathan, et al.
Publicado: (2010)