Cargando…
Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway
BACKGROUND: Cytokinesis is the final step of cell division taking place at the end of mitosis during which the cytoplasmic content and replicated chromosomes of a cell are equally partitioned between the two daughter cells. This process is achieved by the formation and the ingression of an actomyosi...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527559/ https://www.ncbi.nlm.nih.gov/pubmed/18667055 http://dx.doi.org/10.1186/1471-2121-9-42 |
_version_ | 1782158817711095808 |
---|---|
author | Bompard, Guillaume Rabeharivelo, Gabriel Morin, Nathalie |
author_facet | Bompard, Guillaume Rabeharivelo, Gabriel Morin, Nathalie |
author_sort | Bompard, Guillaume |
collection | PubMed |
description | BACKGROUND: Cytokinesis is the final step of cell division taking place at the end of mitosis during which the cytoplasmic content and replicated chromosomes of a cell are equally partitioned between the two daughter cells. This process is achieved by the formation and the ingression of an actomyosin contractile ring under the control of equatorial microtubules. The mechanisms of contractile ring formation are not fully understood but involve recruitment of preexisting actin filaments and de novo actin polymerisation. RESULTS: In this study, we evaluated the role of the actin nucleation factor, Arp2/3 complex, during cytokinesis. We found that the Arp2/3 complex is recruited late to the cleavage furrow suggesting a potential involvement of Arp2/3 complex during this process. Furthermore, wiskostatin a potent inhibitor of N-WASP activity towards the Arp2/3 complex blocked cytokinesis without affecting mitosis. Nonetheless, this inhibition could not be reproduced using alternative approaches targeting the N-WASP/Arp2/3 complex pathway. CONCLUSION: We conclude that the wiskostatin induced defective cytokinesis does not occur through the inhibition of the N-WASP/Arp2/3 pathway. Wiskostatin is likely to either directly target other proteins required for cytokinesis progression or alternately wiskostatin bound to N-WASP could affect the activity of other factors involved in cytokinesis. |
format | Text |
id | pubmed-2527559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25275592008-09-02 Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway Bompard, Guillaume Rabeharivelo, Gabriel Morin, Nathalie BMC Cell Biol Research Article BACKGROUND: Cytokinesis is the final step of cell division taking place at the end of mitosis during which the cytoplasmic content and replicated chromosomes of a cell are equally partitioned between the two daughter cells. This process is achieved by the formation and the ingression of an actomyosin contractile ring under the control of equatorial microtubules. The mechanisms of contractile ring formation are not fully understood but involve recruitment of preexisting actin filaments and de novo actin polymerisation. RESULTS: In this study, we evaluated the role of the actin nucleation factor, Arp2/3 complex, during cytokinesis. We found that the Arp2/3 complex is recruited late to the cleavage furrow suggesting a potential involvement of Arp2/3 complex during this process. Furthermore, wiskostatin a potent inhibitor of N-WASP activity towards the Arp2/3 complex blocked cytokinesis without affecting mitosis. Nonetheless, this inhibition could not be reproduced using alternative approaches targeting the N-WASP/Arp2/3 complex pathway. CONCLUSION: We conclude that the wiskostatin induced defective cytokinesis does not occur through the inhibition of the N-WASP/Arp2/3 pathway. Wiskostatin is likely to either directly target other proteins required for cytokinesis progression or alternately wiskostatin bound to N-WASP could affect the activity of other factors involved in cytokinesis. BioMed Central 2008-07-30 /pmc/articles/PMC2527559/ /pubmed/18667055 http://dx.doi.org/10.1186/1471-2121-9-42 Text en Copyright © 2008 Bompard et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bompard, Guillaume Rabeharivelo, Gabriel Morin, Nathalie Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway |
title | Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway |
title_full | Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway |
title_fullStr | Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway |
title_full_unstemmed | Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway |
title_short | Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway |
title_sort | inhibition of cytokinesis by wiskostatin does not rely on n-wasp/arp2/3 complex pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527559/ https://www.ncbi.nlm.nih.gov/pubmed/18667055 http://dx.doi.org/10.1186/1471-2121-9-42 |
work_keys_str_mv | AT bompardguillaume inhibitionofcytokinesisbywiskostatindoesnotrelyonnwasparp23complexpathway AT rabeharivelogabriel inhibitionofcytokinesisbywiskostatindoesnotrelyonnwasparp23complexpathway AT morinnathalie inhibitionofcytokinesisbywiskostatindoesnotrelyonnwasparp23complexpathway |