Cargando…
A convenient and adjustable surface-modified complex containing poly-L-glutamic acid conjugates as a vector for gene delivery
In order to quantify the amount of ligands or poly(ethylene glycol) (PEG) on each vector, here we developed a system in which poly-L-glutamic acid (PLG) was used as surface modification loading backbone, to which one PEG (MW 5000, 10000, 20000) or epidermal growth factor (EGF) was linked. The PLG co...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527664/ https://www.ncbi.nlm.nih.gov/pubmed/18686784 |
Sumario: | In order to quantify the amount of ligands or poly(ethylene glycol) (PEG) on each vector, here we developed a system in which poly-L-glutamic acid (PLG) was used as surface modification loading backbone, to which one PEG (MW 5000, 10000, 20000) or epidermal growth factor (EGF) was linked. The PLG conjugates can electro-statically adsorb upon DNA/polycation complex with positive charge, and, the amount of EGF or PEG on the surface of complexes could be varied. We have made a series of complexes containing the various PLG conjugates and examined their physicochemical properties, and made a comparison of properties and transfection efficiency between these complexes. EGF- and PEG-modified complexes showed 10–25-folds higher cell transfection efficiency than unmodified complexes in medium with or without serum. |
---|