Cargando…

The solution structure of the amino-terminal domain of human DNA polymerase ε subunit B is homologous to C-domains of AAA+ proteins

DNA polymerases α, δ and ε are large multisubunit complexes that replicate the bulk of the DNA in the eukaryotic cell. In addition to the homologous catalytic subunits, these enzymes possess structurally related B subunits, characterized by a carboxyterminal calcineurin-like and an aminoproximal oli...

Descripción completa

Detalles Bibliográficos
Autores principales: Nuutinen, Tarmo, Tossavainen, Helena, Fredriksson, Kai, Pirilä, Päivi, Permi, Perttu, Pospiech, Helmut, Syvaoja, Juhani E.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528186/
https://www.ncbi.nlm.nih.gov/pubmed/18676977
http://dx.doi.org/10.1093/nar/gkn497
Descripción
Sumario:DNA polymerases α, δ and ε are large multisubunit complexes that replicate the bulk of the DNA in the eukaryotic cell. In addition to the homologous catalytic subunits, these enzymes possess structurally related B subunits, characterized by a carboxyterminal calcineurin-like and an aminoproximal oligonucleotide/oligosaccharide binding-fold domain. The B subunits also share homology with the exonuclease subunit of archaeal DNA polymerases D. Here, we describe a novel domain specific to the N-terminus of the B subunit of eukaryotic DNA polymerases ε. The N-terminal domain of human DNA polymerases ε (Dpoe2NT) expressed in Escherichia coli was characterized. Circular dichroism studies demonstrated that Dpoe2NT forms a stable, predominantly α-helical structure. The solution structure of Dpoe2NT revealed a domain that consists of a left-handed superhelical bundle. Four helices are arranged in two hairpins and the connecting loops contain short β-strand segments that form a short parallel sheet. DALI searches demonstrated a striking structural similarity of the Dpoe2NT with the α-helical subdomains of ATPase associated with various cellular activity (AAA+) proteins (the C-domain). Like C-domains, Dpoe2NT is rich in charged amino acids. The biased distribution of the charged residues is reflected by a polarization and a considerable dipole moment across the Dpoe2NT. Dpoe2NT represents the first C-domain fold not associated with an AAA+ protein.