Cargando…
Tissue-specific splicing factor gene expression signatures
The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528195/ https://www.ncbi.nlm.nih.gov/pubmed/18653532 http://dx.doi.org/10.1093/nar/gkn463 |
_version_ | 1782158870853976064 |
---|---|
author | Grosso, Ana Rita Gomes, Anita Q. Barbosa-Morais, Nuno L. Caldeira, Sandra Thorne, Natalie P. Grech, Godfrey von Lindern, Marieke Carmo-Fonseca, Maria |
author_facet | Grosso, Ana Rita Gomes, Anita Q. Barbosa-Morais, Nuno L. Caldeira, Sandra Thorne, Natalie P. Grech, Godfrey von Lindern, Marieke Carmo-Fonseca, Maria |
author_sort | Grosso, Ana Rita |
collection | PubMed |
description | The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently started to become available. Here we show that splicing factor gene expression signatures can be identified that reflect cell type and tissue-specific patterns of alternative splicing. We used a computational approach to analyze microarray-based gene expression profiles of splicing factors from mouse, chimpanzee and human tissues. Our results show that brain and testis, the two tissues with highest levels of alternative splicing events, have the largest number of splicing factor genes that are most highly differentially expressed. We further identified SR protein kinases and small nuclear ribonucleoprotein particle (snRNP) proteins among the splicing factor genes that are most highly differentially expressed in a particular tissue. These results indicate the power of generating signature-based predictions as an initial computational approach into a global view of tissue-specific alternative splicing regulation. |
format | Text |
id | pubmed-2528195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-25281952008-09-03 Tissue-specific splicing factor gene expression signatures Grosso, Ana Rita Gomes, Anita Q. Barbosa-Morais, Nuno L. Caldeira, Sandra Thorne, Natalie P. Grech, Godfrey von Lindern, Marieke Carmo-Fonseca, Maria Nucleic Acids Res Computational Biology The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently started to become available. Here we show that splicing factor gene expression signatures can be identified that reflect cell type and tissue-specific patterns of alternative splicing. We used a computational approach to analyze microarray-based gene expression profiles of splicing factors from mouse, chimpanzee and human tissues. Our results show that brain and testis, the two tissues with highest levels of alternative splicing events, have the largest number of splicing factor genes that are most highly differentially expressed. We further identified SR protein kinases and small nuclear ribonucleoprotein particle (snRNP) proteins among the splicing factor genes that are most highly differentially expressed in a particular tissue. These results indicate the power of generating signature-based predictions as an initial computational approach into a global view of tissue-specific alternative splicing regulation. Oxford University Press 2008-09 2008-07-24 /pmc/articles/PMC2528195/ /pubmed/18653532 http://dx.doi.org/10.1093/nar/gkn463 Text en © 2008 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Computational Biology Grosso, Ana Rita Gomes, Anita Q. Barbosa-Morais, Nuno L. Caldeira, Sandra Thorne, Natalie P. Grech, Godfrey von Lindern, Marieke Carmo-Fonseca, Maria Tissue-specific splicing factor gene expression signatures |
title | Tissue-specific splicing factor gene expression signatures |
title_full | Tissue-specific splicing factor gene expression signatures |
title_fullStr | Tissue-specific splicing factor gene expression signatures |
title_full_unstemmed | Tissue-specific splicing factor gene expression signatures |
title_short | Tissue-specific splicing factor gene expression signatures |
title_sort | tissue-specific splicing factor gene expression signatures |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528195/ https://www.ncbi.nlm.nih.gov/pubmed/18653532 http://dx.doi.org/10.1093/nar/gkn463 |
work_keys_str_mv | AT grossoanarita tissuespecificsplicingfactorgeneexpressionsignatures AT gomesanitaq tissuespecificsplicingfactorgeneexpressionsignatures AT barbosamoraisnunol tissuespecificsplicingfactorgeneexpressionsignatures AT caldeirasandra tissuespecificsplicingfactorgeneexpressionsignatures AT thornenataliep tissuespecificsplicingfactorgeneexpressionsignatures AT grechgodfrey tissuespecificsplicingfactorgeneexpressionsignatures AT vonlindernmarieke tissuespecificsplicingfactorgeneexpressionsignatures AT carmofonsecamaria tissuespecificsplicingfactorgeneexpressionsignatures |