Cargando…

RanBPM regulates cell shape, arrangement, and capacity of the female germline stem cell niche in Drosophila melanogaster

Experiments in cultured cells with Ran-binding protein M (RanBPM) suggest that it links cell surface receptors and cell adhesion proteins. In this study, we undertake a genetic study of RanBPM function in the germline stem cell (GSC) niche of Drosophila melanogaster ovaries. We find that two RanBPM...

Descripción completa

Detalles Bibliográficos
Autores principales: Dansereau, David A., Lasko, Paul
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528568/
https://www.ncbi.nlm.nih.gov/pubmed/18762575
http://dx.doi.org/10.1083/jcb.200711046
Descripción
Sumario:Experiments in cultured cells with Ran-binding protein M (RanBPM) suggest that it links cell surface receptors and cell adhesion proteins. In this study, we undertake a genetic study of RanBPM function in the germline stem cell (GSC) niche of Drosophila melanogaster ovaries. We find that two RanBPM isoforms are produced from alternatively spliced transcripts, the longer of which is specifically enriched in the GSC niche, a cluster of somatic cells that physically anchors GSCs and expresses signals that maintain GSC fate. Loss of the long isoform from the niche causes defects in niche organization and cell size and increases the number of GSCs attached to the niche. In genetic mosaics for a null RanBPM allele, we find a strong bias for GSC attachment to mutant cap cells and observe abnormal accumulation of the adherens junction component Armadillo (β-catenin) and the membrane skeletal protein Hu-li tai shao in mutant terminal filament cells. These results implicate RanBPM in the regulation of niche capacity and adhesion.