Cargando…

Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride

Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Ingavale, Susham S., Chang, Yun C., Lee, Hyeseung, McClelland, Carol M., Leong, Madeline L., Kwon-Chung, Kyung J.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528940/
https://www.ncbi.nlm.nih.gov/pubmed/18802457
http://dx.doi.org/10.1371/journal.ppat.1000155
_version_ 1782158891165941760
author Ingavale, Susham S.
Chang, Yun C.
Lee, Hyeseung
McClelland, Carol M.
Leong, Madeline L.
Kwon-Chung, Kyung J.
author_facet Ingavale, Susham S.
Chang, Yun C.
Lee, Hyeseung
McClelland, Carol M.
Leong, Madeline L.
Kwon-Chung, Kyung J.
author_sort Ingavale, Susham S.
collection PubMed
description Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investigate the oxygen sensing mechanism in C. neoformans, we screened T-DNA insertional mutants for hypoxia-mimetic cobalt chloride (CoCl(2))-sensitive mutants. All the CoCl(2)-sensitive mutants had a growth defect under low oxygen conditions at 37°C. The majority of mutants are compromised in their mitochondrial function, which is reflected by their reduced rate of respiration. Some of the mutants are also defective in mitochondrial membrane permeability, suggesting the importance of an intact respiratory system for survival under both high concentrations of CoCl(2) as well as low oxygen conditions. In addition, the mutants tend to accumulate intracellular reactive oxygen species (ROS), and all mutants show sensitivity to various ROS generating chemicals. Gene expression analysis revealed the involvement of several pathways in response to cobalt chloride. Our findings indicate cobalt chloride sensitivity and/or sensitivity to low oxygen conditions are linked to mitochondrial function, sterol and iron homeostasis, ubiquitination, and the ability of cells to respond to ROS. These findings imply that multiple pathways are involved in oxygen sensing in C. neoformans.
format Text
id pubmed-2528940
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-25289402008-09-19 Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride Ingavale, Susham S. Chang, Yun C. Lee, Hyeseung McClelland, Carol M. Leong, Madeline L. Kwon-Chung, Kyung J. PLoS Pathog Research Article Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investigate the oxygen sensing mechanism in C. neoformans, we screened T-DNA insertional mutants for hypoxia-mimetic cobalt chloride (CoCl(2))-sensitive mutants. All the CoCl(2)-sensitive mutants had a growth defect under low oxygen conditions at 37°C. The majority of mutants are compromised in their mitochondrial function, which is reflected by their reduced rate of respiration. Some of the mutants are also defective in mitochondrial membrane permeability, suggesting the importance of an intact respiratory system for survival under both high concentrations of CoCl(2) as well as low oxygen conditions. In addition, the mutants tend to accumulate intracellular reactive oxygen species (ROS), and all mutants show sensitivity to various ROS generating chemicals. Gene expression analysis revealed the involvement of several pathways in response to cobalt chloride. Our findings indicate cobalt chloride sensitivity and/or sensitivity to low oxygen conditions are linked to mitochondrial function, sterol and iron homeostasis, ubiquitination, and the ability of cells to respond to ROS. These findings imply that multiple pathways are involved in oxygen sensing in C. neoformans. Public Library of Science 2008-09-19 /pmc/articles/PMC2528940/ /pubmed/18802457 http://dx.doi.org/10.1371/journal.ppat.1000155 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Ingavale, Susham S.
Chang, Yun C.
Lee, Hyeseung
McClelland, Carol M.
Leong, Madeline L.
Kwon-Chung, Kyung J.
Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride
title Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride
title_full Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride
title_fullStr Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride
title_full_unstemmed Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride
title_short Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride
title_sort importance of mitochondria in survival of cryptococcus neoformans under low oxygen conditions and tolerance to cobalt chloride
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528940/
https://www.ncbi.nlm.nih.gov/pubmed/18802457
http://dx.doi.org/10.1371/journal.ppat.1000155
work_keys_str_mv AT ingavalesushams importanceofmitochondriainsurvivalofcryptococcusneoformansunderlowoxygenconditionsandtolerancetocobaltchloride
AT changyunc importanceofmitochondriainsurvivalofcryptococcusneoformansunderlowoxygenconditionsandtolerancetocobaltchloride
AT leehyeseung importanceofmitochondriainsurvivalofcryptococcusneoformansunderlowoxygenconditionsandtolerancetocobaltchloride
AT mcclellandcarolm importanceofmitochondriainsurvivalofcryptococcusneoformansunderlowoxygenconditionsandtolerancetocobaltchloride
AT leongmadelinel importanceofmitochondriainsurvivalofcryptococcusneoformansunderlowoxygenconditionsandtolerancetocobaltchloride
AT kwonchungkyungj importanceofmitochondriainsurvivalofcryptococcusneoformansunderlowoxygenconditionsandtolerancetocobaltchloride