Cargando…
A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data
BACKGROUND: A better understanding of the mechanisms involved in gas-phase fragmentation of peptides is essential for the development of more reliable algorithms for high-throughput protein identification using mass spectrometry (MS). Current methodologies depend predominantly on the use of derived...
Autores principales: | Zhou, Cong, Bowler, Lucas D, Feng, Jianfeng |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2529326/ https://www.ncbi.nlm.nih.gov/pubmed/18664292 http://dx.doi.org/10.1186/1471-2105-9-325 |
Ejemplares similares
-
Quality assessment of peptide tandem mass spectra
por: Wu, Fang-Xiang, et al.
Publicado: (2008) -
SPEQ: quality assessment of peptide tandem mass spectra with deep learning
por: Gholamizoj, Soroosh, et al.
Publicado: (2022) -
An unsupervised machine learning method for assessing quality of tandem mass spectra
por: Lin, Wenjun, et al.
Publicado: (2012) -
Development of tools for the automated analysis of spectra generated by tandem mass spectrometry
por: Ellingson, Sally, et al.
Publicado: (2010) -
Peptide de novo sequencing of mixture tandem mass spectra
por: Gorshkov, Vladimir, et al.
Publicado: (2016)