Cargando…

Further delineation of complex chromosomal rearrangements in fertile male using multicolor banding

BACKGROUND: Complex chromosomal rearrangements (CCRs) are defined as structural chromosomal rearrangements with at least three breakpoints and exchange of genetic material between two or more chromosomes. Complex chromosomal translocations are rarely seen in the general population but the frequency...

Descripción completa

Detalles Bibliográficos
Autores principales: Karadeniz, Nilüfer, Mrasek, Kristin, Weise, Anja
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2531127/
https://www.ncbi.nlm.nih.gov/pubmed/18687140
http://dx.doi.org/10.1186/1755-8166-1-17
Descripción
Sumario:BACKGROUND: Complex chromosomal rearrangements (CCRs) are defined as structural chromosomal rearrangements with at least three breakpoints and exchange of genetic material between two or more chromosomes. Complex chromosomal translocations are rarely seen in the general population but the frequency of occurrence is anticipated to be much higher due balanced states with no phenotypic presentation. Here, we report a severely mentally retarded fertile male patient in whom further delineation of CCR involving chromosomes 1, 4 and 2 was carried out by using high resolution multicolor banding (MCB) technique. As a FISH based novel chromosome banding approach, high resolution MCB allows for the differentiation of chromosome region specific areas at band and subband levels. RESULTS: Cytogenetic studies using high resolution banding of the proband necessitated further delineation of the breakpoints because of their uncertainty: 46,XY,t(1;4;2)(p21~31;q31.3;q31). After using high resolution MCB based on microdissection derived region-specific libraries, the exact nature of chromosomal rearrangements for chromosomes 1, 2 and 4 were revealed and these breakpoints were located on 1p31.1, 1q24.3 and 4q31.3 giving rise to a balanced situation. CONCLUSION: Further delineations are certainly required to provide detailed information about the relationship between balanced CCRs and their phenotypes in order to offer proper counseling to the families concerned. Carriers must be investigated with high resolution banding and molecular cytogenetic techniques to determine the exact locations of the breakpoints. High resolution MCB is an alternative and an efficient method to other FISH based chromosome banding techniques and can serve in clarifying the nature of CCR.