Cargando…

Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling

BACKGROUND: The development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previou...

Descripción completa

Detalles Bibliográficos
Autores principales: Faulkner, Regina L, Low, Lawrence K, Liu, Xiao-Bo, Coble, Jeffrey, Jones, Edward G, Cheng, Hwai-Jong
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532682/
https://www.ncbi.nlm.nih.gov/pubmed/18727829
http://dx.doi.org/10.1186/1749-8104-3-21
_version_ 1782158986369302528
author Faulkner, Regina L
Low, Lawrence K
Liu, Xiao-Bo
Coble, Jeffrey
Jones, Edward G
Cheng, Hwai-Jong
author_facet Faulkner, Regina L
Low, Lawrence K
Liu, Xiao-Bo
Coble, Jeffrey
Jones, Edward G
Cheng, Hwai-Jong
author_sort Faulkner, Regina L
collection PubMed
description BACKGROUND: The development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previous analyses of the CST guidance defects in mutant mice lacking these molecules have suggested that there are other molecules involved in CST axon guidance that are yet to be identified. In this study, we investigate the role of plexin signaling in the guidance of motor CST axons in vivo. RESULTS: Expression pattern studies show that plexin-A3, plexin-A4, and neuropilin-1 are expressed in the developing cerebral cortex when the motor CST axons originating from layer V cortical neurons are guided down to the spinal cord. By analyzing mutant mice, we show that motor CST axons that turn dorsally to cross the midline at the pyramidal decussation require plexin-A3 and plexin-A4 signaling. Although other CST guidance defects are found in neuropilin-1 mutants, this dorsal turning defect is not observed in either neuropilin-1 or neuropilin-2 mutants, suggesting that the local cues that activate plexin signaling at the dorsal turning point are membrane-bound semaphorins. Further expression pattern study and mutant analysis indicate that Sema6A is one of the local cues for motor CST axon turning at the pyramidal decussation. CONCLUSION: Dorsal turning and midline crossing at the pyramidal decussation is a crucial step to properly direct CST axons into the dorsal spinal cord. We show that the signaling of plexin-A3, plexin-A4, and Sema6A is at least partially required for dorsal turning of the CST axons, while neuropilin-1 is required for proper fasciculation of the tract at midline crossing. Together with previous reports, these results demonstrate that several guidance cues are specifically utilized to regulate the dorsal turning and midline crossing of developing CST axons.
format Text
id pubmed-2532682
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-25326822008-09-09 Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling Faulkner, Regina L Low, Lawrence K Liu, Xiao-Bo Coble, Jeffrey Jones, Edward G Cheng, Hwai-Jong Neural Develop Research Article BACKGROUND: The development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previous analyses of the CST guidance defects in mutant mice lacking these molecules have suggested that there are other molecules involved in CST axon guidance that are yet to be identified. In this study, we investigate the role of plexin signaling in the guidance of motor CST axons in vivo. RESULTS: Expression pattern studies show that plexin-A3, plexin-A4, and neuropilin-1 are expressed in the developing cerebral cortex when the motor CST axons originating from layer V cortical neurons are guided down to the spinal cord. By analyzing mutant mice, we show that motor CST axons that turn dorsally to cross the midline at the pyramidal decussation require plexin-A3 and plexin-A4 signaling. Although other CST guidance defects are found in neuropilin-1 mutants, this dorsal turning defect is not observed in either neuropilin-1 or neuropilin-2 mutants, suggesting that the local cues that activate plexin signaling at the dorsal turning point are membrane-bound semaphorins. Further expression pattern study and mutant analysis indicate that Sema6A is one of the local cues for motor CST axon turning at the pyramidal decussation. CONCLUSION: Dorsal turning and midline crossing at the pyramidal decussation is a crucial step to properly direct CST axons into the dorsal spinal cord. We show that the signaling of plexin-A3, plexin-A4, and Sema6A is at least partially required for dorsal turning of the CST axons, while neuropilin-1 is required for proper fasciculation of the tract at midline crossing. Together with previous reports, these results demonstrate that several guidance cues are specifically utilized to regulate the dorsal turning and midline crossing of developing CST axons. BioMed Central 2008-08-26 /pmc/articles/PMC2532682/ /pubmed/18727829 http://dx.doi.org/10.1186/1749-8104-3-21 Text en Copyright © 2008 Faulkner et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Faulkner, Regina L
Low, Lawrence K
Liu, Xiao-Bo
Coble, Jeffrey
Jones, Edward G
Cheng, Hwai-Jong
Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
title Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
title_full Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
title_fullStr Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
title_full_unstemmed Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
title_short Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
title_sort dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532682/
https://www.ncbi.nlm.nih.gov/pubmed/18727829
http://dx.doi.org/10.1186/1749-8104-3-21
work_keys_str_mv AT faulknerreginal dorsalturningofmotorcorticospinalaxonsatthepyramidaldecussationrequiresplexinsignaling
AT lowlawrencek dorsalturningofmotorcorticospinalaxonsatthepyramidaldecussationrequiresplexinsignaling
AT liuxiaobo dorsalturningofmotorcorticospinalaxonsatthepyramidaldecussationrequiresplexinsignaling
AT coblejeffrey dorsalturningofmotorcorticospinalaxonsatthepyramidaldecussationrequiresplexinsignaling
AT jonesedwardg dorsalturningofmotorcorticospinalaxonsatthepyramidaldecussationrequiresplexinsignaling
AT chenghwaijong dorsalturningofmotorcorticospinalaxonsatthepyramidaldecussationrequiresplexinsignaling