Cargando…
Somatic ‘Soluble’ Adenylyl Cyclase Isoforms Are Unaffected in Sacy(tm1Lex)/Sacy(tm1Lex) ‘Knockout’ Mice
BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex)/Sacy(tm1Lex) knocko...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532759/ https://www.ncbi.nlm.nih.gov/pubmed/18806876 http://dx.doi.org/10.1371/journal.pone.0003251 |
Sumario: | BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex)/Sacy(tm1Lex) knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS: We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which ‘escapes’ the design of the Sacy(tm1Lex) knockout allele. CONCLUSIONS/SIGNIFICANCE: These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells. |
---|