Cargando…
A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis
BACKGROUND: The difficulty in elucidating the genetic basis of complex diseases roots in the many factors that can affect the development of a disease. Some of these genetic effects may interact in complex ways, proving undetectable by current single-locus methodology. RESULTS: We have developed an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533022/ https://www.ncbi.nlm.nih.gov/pubmed/18667089 http://dx.doi.org/10.1186/1471-2164-9-360 |
Sumario: | BACKGROUND: The difficulty in elucidating the genetic basis of complex diseases roots in the many factors that can affect the development of a disease. Some of these genetic effects may interact in complex ways, proving undetectable by current single-locus methodology. RESULTS: We have developed an analysis tool called Hypothesis Free Clinical Cloning (HFCC) to search for genome-wide epistasis in a case-control design. HFCC combines a relatively fast computing algorithm for genome-wide epistasis detection, with the flexibility to test a variety of different epistatic models in multi-locus combinations. HFCC has good power to detect multi-locus interactions simulated under a variety of genetic models and noise conditions. Most importantly, HFCC can accomplish exhaustive genome-wide epistasis search with large datasets as demonstrated with a 400,000 SNP set typed on a cohort of Parkinson's disease patients and controls. CONCLUSION: With the current availability of genetic studies with large numbers of individuals and genetic markers, HFCC can have a great impact in the identification of epistatic effects that escape the standard single-locus association analyses. |
---|